import os from langchain import hub from langchain.agents import load_tools, initialize_agent, AgentType from langchain_core.messages import HumanMessage, SystemMessage, AIMessage from langchain_huggingface import HuggingFaceEndpoint from langchain_huggingface import ChatHuggingFace class LLMResource: llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.2", task="text-generation", huggingfacehub_api_token=os.environ["API_KEY"], streaming=True, temperature=0.5 ) chat_model = ChatHuggingFace( llm = llm, ) tools = load_tools(["wikipedia"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True, ) @staticmethod def invoke(message:str): response = LLMResource.agent.invoke(message) print(response) return response["output"][:-4] @staticmethod def test(): print(LLMResource.agent.invoke("When was the movie \'Oppenheimer\' released?")) if __name__ == "__main__": LLMResource.test()