Lohith9923's picture
Upload app.py
5df6c57
raw
history blame
1.59 kB
import gradio as gr
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
path = 'tf_model/'
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = TFAutoModelForSeq2SeqLM.from_pretrained(path)
title = 'Text Translation(English to Hindi)'
def process_input(text):
# Tokenize the input text using the tokenizer and convert to NumPy arrays
tokenized = tokenizer([text], return_tensors='np')
# Generate output sequences using the pre-trained model
out = model.generate(**tokenized, max_length=128)
# Switch the tokenizer to target mode
with tokenizer.as_target_tokenizer():
# Decode the generated output sequence, skipping special tokens
result = tokenizer.decode(out[0], skip_special_tokens=True)
return result
# Example input text for the GUI
examples = ['If you have the time, come along with me.', 'I can come if you want.', 'Tom was at home alone.', 'Wow!','How rude of you!',"What's in your hand?"]
# Create a Gradio Interface for the model
model_gui = gr.Interface(
process_input, # Function for processing input and generating output
gr.Textbox(lines=3, label="English"), # Textbox for entering English text
gr.Textbox(lines=3, label="Hindi"), # Textbox for displaying translated Hindi text
title=title, # Set the title of the GUI
examples=examples # Provide example input text for the GUI
)
# Launch the Gradio GUI with sharing enabled
model_gui.launch(share=True)