Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM | |
path = 'tf_model/' | |
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = TFAutoModelForSeq2SeqLM.from_pretrained(path) | |
title = 'Text Translation(English to Hindi)' | |
def process_input(text): | |
# Tokenize the input text using the tokenizer and convert to NumPy arrays | |
tokenized = tokenizer([text], return_tensors='np') | |
# Generate output sequences using the pre-trained model | |
out = model.generate(**tokenized, max_length=128) | |
# Switch the tokenizer to target mode | |
with tokenizer.as_target_tokenizer(): | |
# Decode the generated output sequence, skipping special tokens | |
result = tokenizer.decode(out[0], skip_special_tokens=True) | |
return result | |
# Example input text for the GUI | |
examples = ['If you have the time, come along with me.', 'I can come if you want.', 'Tom was at home alone.', 'Wow!','How rude of you!',"What's in your hand?"] | |
# Create a Gradio Interface for the model | |
model_gui = gr.Interface( | |
process_input, # Function for processing input and generating output | |
gr.Textbox(lines=3, label="English"), # Textbox for entering English text | |
gr.Textbox(lines=3, label="Hindi"), # Textbox for displaying translated Hindi text | |
title=title, # Set the title of the GUI | |
examples=examples # Provide example input text for the GUI | |
) | |
# Launch the Gradio GUI with sharing enabled | |
model_gui.launch(share=True) |