8 files test
Browse files- .gitattributes +1 -0
- app.ipynb +163 -0
- app.py +27 -0
- cat.jpg +3 -0
- dog.jpg +0 -0
- dunno.jpg +0 -0
- model.pkl +3 -0
- requirements.txt +2 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cat.jpg filter=lfs diff=lfs merge=lfs -text
|
app.ipynb
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from fastai.vision.all import *\n",
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import pathlib\n",
|
12 |
+
"temp = pathlib.PosixPath\n",
|
13 |
+
"pathlib.PosixPath = pathlib.WindowsPath\n",
|
14 |
+
"\n",
|
15 |
+
"def is_cat(x): return x[0].isupper()"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 2,
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"learn = load_learner('model.pkl')"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 3,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"categories = ('Dog', 'Cat')\n",
|
34 |
+
"\n",
|
35 |
+
"def classify_image(img):\n",
|
36 |
+
" pred,idx,probs = learn.predict(img)\n",
|
37 |
+
" return dict(zip(categories, map(float,probs)))"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 4,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [
|
45 |
+
{
|
46 |
+
"name": "stderr",
|
47 |
+
"output_type": "stream",
|
48 |
+
"text": [
|
49 |
+
"C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:1: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
|
50 |
+
" image = gr.inputs.Image(shape=(192, 192))\n",
|
51 |
+
"C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:1: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n",
|
52 |
+
" image = gr.inputs.Image(shape=(192, 192))\n",
|
53 |
+
"C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:2: GradioDeprecationWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
|
54 |
+
" label = gr.outputs.Label()\n",
|
55 |
+
"C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:2: GradioUnusedKwargWarning: You have unused kwarg parameters in Label, please remove them: {'type': 'auto'}\n",
|
56 |
+
" label = gr.outputs.Label()\n"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "stdout",
|
61 |
+
"output_type": "stream",
|
62 |
+
"text": [
|
63 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
64 |
+
"\n",
|
65 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"data": {
|
70 |
+
"text/plain": []
|
71 |
+
},
|
72 |
+
"execution_count": 4,
|
73 |
+
"metadata": {},
|
74 |
+
"output_type": "execute_result"
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"source": [
|
78 |
+
"image = gr.inputs.Image(shape=(192, 192))\n",
|
79 |
+
"label = gr.outputs.Label()\n",
|
80 |
+
"examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
|
81 |
+
"\n",
|
82 |
+
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
83 |
+
"intf.launch(inline=False)"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 5,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"import nbdev\n"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 6,
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"name": "stdout",
|
102 |
+
"output_type": "stream",
|
103 |
+
"text": [
|
104 |
+
"C:\\Users\\Lenovo\\Desktop\\fastaiTesting\\testai\n"
|
105 |
+
]
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"import os\n",
|
110 |
+
"print(os.getcwd())"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 7,
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [],
|
118 |
+
"source": [
|
119 |
+
"nbdev.export.nb_export('app.ipynb', r'C:\\Users\\Lenovo\\Desktop\\fastaiTesting\\testai')"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": 8,
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [
|
127 |
+
{
|
128 |
+
"name": "stdout",
|
129 |
+
"output_type": "stream",
|
130 |
+
"text": [
|
131 |
+
"C:\\Users\\Lenovo\\miniconda3\\envs\\pytorch\\python.exe\n"
|
132 |
+
]
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"source": [
|
136 |
+
"import sys\n",
|
137 |
+
"\n",
|
138 |
+
"print(sys.executable)"
|
139 |
+
]
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"metadata": {
|
143 |
+
"kernelspec": {
|
144 |
+
"display_name": "Python 3 (ipykernel)",
|
145 |
+
"language": "python",
|
146 |
+
"name": "python3"
|
147 |
+
},
|
148 |
+
"language_info": {
|
149 |
+
"codemirror_mode": {
|
150 |
+
"name": "ipython",
|
151 |
+
"version": 3
|
152 |
+
},
|
153 |
+
"file_extension": ".py",
|
154 |
+
"mimetype": "text/x-python",
|
155 |
+
"name": "python",
|
156 |
+
"nbconvert_exporter": "python",
|
157 |
+
"pygments_lexer": "ipython3",
|
158 |
+
"version": "3.8.17"
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"nbformat": 4,
|
162 |
+
"nbformat_minor": 4
|
163 |
+
}
|
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AUTOGENERATED! DO NOT EDIT! File to edit: . (unless otherwise specified).
|
2 |
+
|
3 |
+
__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
4 |
+
|
5 |
+
# Cell
|
6 |
+
from fastai.vision.all import *
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
def is_cat(x): return x[0].isupper()
|
10 |
+
|
11 |
+
# Cell
|
12 |
+
learn = load_learner('model.pkl')
|
13 |
+
|
14 |
+
# Cell
|
15 |
+
categories = ('Dog', 'Cat')
|
16 |
+
|
17 |
+
def classify_image(img):
|
18 |
+
pred,idx,probs = learn.predict(img)
|
19 |
+
return dict(zip(categories, map(float,probs)))
|
20 |
+
|
21 |
+
# Cell
|
22 |
+
image = gr.inputs.Image(shape=(192, 192))
|
23 |
+
label = gr.outputs.Label()
|
24 |
+
examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
|
25 |
+
|
26 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
27 |
+
intf.launch(inline=False)
|
cat.jpg
ADDED
Git LFS Details
|
dog.jpg
ADDED
dunno.jpg
ADDED
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46eee60a5eac1402f8402ce1915230e6ca75d8d05c35c4e9500eadf2e39c525a
|
3 |
+
size 47062827
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
|