{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from fastai.vision.all import *\n", "import gradio as gr\n", "import pathlib\n", "temp = pathlib.PosixPath\n", "pathlib.PosixPath = pathlib.WindowsPath\n", "\n", "def is_cat(x): return x[0].isupper()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "learn = load_learner('model.pkl')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "categories = ('Dog', 'Cat')\n", "\n", "def classify_image(img):\n", " pred,idx,probs = learn.predict(img)\n", " return dict(zip(categories, map(float,probs)))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:1: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n", " image = gr.inputs.Image(shape=(192, 192))\n", "C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:1: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n", " image = gr.inputs.Image(shape=(192, 192))\n", "C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:2: GradioDeprecationWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n", " label = gr.outputs.Label()\n", "C:\\Users\\Lenovo\\AppData\\Local\\Temp\\ipykernel_16112\\1698676069.py:2: GradioUnusedKwargWarning: You have unused kwarg parameters in Label, please remove them: {'type': 'auto'}\n", " label = gr.outputs.Label()\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/plain": [] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "image = gr.inputs.Image(shape=(192, 192))\n", "label = gr.outputs.Label()\n", "examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n", "\n", "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n", "intf.launch(inline=False)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import nbdev\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C:\\Users\\Lenovo\\Desktop\\fastaiTesting\\testai\n" ] } ], "source": [ "import os\n", "print(os.getcwd())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "nbdev.export.nb_export('app.ipynb', r'C:\\Users\\Lenovo\\Desktop\\fastaiTesting\\testai')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C:\\Users\\Lenovo\\miniconda3\\envs\\pytorch\\python.exe\n" ] } ], "source": [ "import sys\n", "\n", "print(sys.executable)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.17" } }, "nbformat": 4, "nbformat_minor": 4 }