Spaces:
Sleeping
Sleeping
LordFarquaad42
commited on
Commit
·
580f382
1
Parent(s):
3c398c2
llm data now streams in
Browse files
app.py
CHANGED
@@ -6,9 +6,11 @@ from openai import OpenAI
|
|
6 |
|
7 |
# CONSTANTS
|
8 |
client = chromadb.PersistentClient(path="./chromadb_linux/")
|
9 |
-
MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1"
|
10 |
COLLECTION_NAME: str = "scheme"
|
11 |
-
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
|
|
|
|
|
12 |
schemer = client.get_collection(
|
13 |
name=COLLECTION_NAME,
|
14 |
embedding_function=EMBEDDING_FUNC,
|
@@ -17,11 +19,15 @@ DATA_AVAL: bool = schemer.count() > 0
|
|
17 |
APP_NAME: str = "Groove-GPT"
|
18 |
history = []
|
19 |
|
20 |
-
# INFO
|
21 |
st.title(APP_NAME)
|
22 |
st.header("What is Groovy-GPT?")
|
23 |
-
st.write(
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
st.write("Data Avaliable: ", DATA_AVAL)
|
26 |
|
27 |
# INPUTS
|
@@ -29,48 +35,80 @@ user_question: str = st.text_area("Enter your groovy questions here")
|
|
29 |
|
30 |
remember_chat_history = st.toggle("Remember This Chat's History")
|
31 |
|
32 |
-
temperature = st.slider(
|
|
|
|
|
33 |
st.markdown("*High creativity will make it go crazy - keep it low*")
|
34 |
|
35 |
-
num_samples = st.slider(
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
access_key: str = st.text_input("Enter your gpt key here", type="password")
|
39 |
-
st.markdown(
|
|
|
|
|
|
|
40 |
|
41 |
-
gpt_type: str = st.selectbox(
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
st.divider()
|
45 |
|
46 |
# ON BUTTON CLICK
|
47 |
-
if st.button(
|
48 |
openai_client = OpenAI(api_key=access_key)
|
49 |
|
50 |
-
with st.spinner(
|
51 |
# Perform the Chromadb query.
|
52 |
results = schemer.query(
|
53 |
-
query_texts=[user_question],
|
54 |
-
n_results=num_samples,
|
55 |
-
include = ['documents']
|
56 |
)
|
57 |
documents = results["documents"]
|
58 |
response = openai_client.chat.completions.create(
|
59 |
model="gpt-3.5-turbo",
|
60 |
messages=[
|
61 |
-
{
|
|
|
|
|
|
|
62 |
{"role": "user", "content": user_question},
|
63 |
{"role": "assistant", "content": str(documents)},
|
64 |
-
{"role": "user", "content": f"Conversation History: {history}"}
|
65 |
],
|
66 |
-
temperature=temperature
|
|
|
67 |
)
|
68 |
-
|
69 |
-
history.append({user_question : response.choices[0].message.content} if remember_chat_history else {})
|
70 |
-
|
71 |
-
st.header("
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
st.write("Please provide an input and (valid) API key")
|
75 |
-
|
76 |
-
|
|
|
6 |
|
7 |
# CONSTANTS
|
8 |
client = chromadb.PersistentClient(path="./chromadb_linux/")
|
9 |
+
MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb
|
10 |
COLLECTION_NAME: str = "scheme"
|
11 |
+
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
|
12 |
+
model_name=MODEL_NAME
|
13 |
+
)
|
14 |
schemer = client.get_collection(
|
15 |
name=COLLECTION_NAME,
|
16 |
embedding_function=EMBEDDING_FUNC,
|
|
|
19 |
APP_NAME: str = "Groove-GPT"
|
20 |
history = []
|
21 |
|
22 |
+
# INFO
|
23 |
st.title(APP_NAME)
|
24 |
st.header("What is Groovy-GPT?")
|
25 |
+
st.write(
|
26 |
+
"Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response."
|
27 |
+
)
|
28 |
+
st.write(
|
29 |
+
"The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Troeger posted"
|
30 |
+
)
|
31 |
st.write("Data Avaliable: ", DATA_AVAL)
|
32 |
|
33 |
# INPUTS
|
|
|
35 |
|
36 |
remember_chat_history = st.toggle("Remember This Chat's History")
|
37 |
|
38 |
+
temperature = st.slider(
|
39 |
+
label="Creativity of Model", min_value=0.0, max_value=2.0, value=0.8
|
40 |
+
)
|
41 |
st.markdown("*High creativity will make it go crazy - keep it low*")
|
42 |
|
43 |
+
num_samples = st.slider(
|
44 |
+
label="Amount of References to Give to Model", min_value=10, max_value=100, value=10
|
45 |
+
)
|
46 |
+
st.markdown(
|
47 |
+
"*High amount will make it slow and expensive (and may not be relevant) - keep it low*"
|
48 |
+
)
|
49 |
|
50 |
access_key: str = st.text_input("Enter your gpt key here", type="password")
|
51 |
+
st.markdown(
|
52 |
+
"*For more information about how to get an access key, read [this article](https://platform.openai.com/api-keys). Make sure it has money in it ☠️*",
|
53 |
+
unsafe_allow_html=True,
|
54 |
+
)
|
55 |
|
56 |
+
gpt_type: str = st.selectbox(
|
57 |
+
label="Choose GPT Type",
|
58 |
+
options=[
|
59 |
+
"gpt-3.5-turbo",
|
60 |
+
"gpt-3.5-turbo-1106",
|
61 |
+
"gpt-3.5-turbo-0125",
|
62 |
+
"gpt-4-32k-0613",
|
63 |
+
"gpt-4-0613",
|
64 |
+
"gpt-4-0125-preview",
|
65 |
+
],
|
66 |
+
index=0,
|
67 |
+
)
|
68 |
+
st.markdown(
|
69 |
+
"*For more information about GPT types, read [this article](https://platform.openai.com/docs/models).*",
|
70 |
+
unsafe_allow_html=True,
|
71 |
+
)
|
72 |
|
73 |
st.divider()
|
74 |
|
75 |
# ON BUTTON CLICK
|
76 |
+
if st.button("Start Scheming") & (access_key != "") & (user_question != ""):
|
77 |
openai_client = OpenAI(api_key=access_key)
|
78 |
|
79 |
+
with st.spinner("Loading..."):
|
80 |
# Perform the Chromadb query.
|
81 |
results = schemer.query(
|
82 |
+
query_texts=[user_question], n_results=num_samples, include=["documents"]
|
|
|
|
|
83 |
)
|
84 |
documents = results["documents"]
|
85 |
response = openai_client.chat.completions.create(
|
86 |
model="gpt-3.5-turbo",
|
87 |
messages=[
|
88 |
+
{
|
89 |
+
"role": "system",
|
90 |
+
"content": "You are an expert in functional programming in R5RS, with great knowledge on programming paradigms. You wish to teach the user everything you know about programming paradigms in R5RS - so you explain everything thoroughly. Surround Latex equations in dollar signs as such Inline equation: $equation$ & Display equation: $$equation$$. You will focus your examples to work exclusively in interative and recursive apporaches",
|
91 |
+
},
|
92 |
{"role": "user", "content": user_question},
|
93 |
{"role": "assistant", "content": str(documents)},
|
94 |
+
{"role": "user", "content": f"Conversation History: {history}"},
|
95 |
],
|
96 |
+
temperature=temperature,
|
97 |
+
stream=True,
|
98 |
)
|
99 |
+
|
100 |
+
# history.append({user_question : response.choices[0].message.content} if remember_chat_history else {})
|
101 |
+
|
102 |
+
st.header("The Mega Schemer Says ...")
|
103 |
+
|
104 |
+
text_placeholder = st.empty()
|
105 |
+
|
106 |
+
content = ""
|
107 |
+
for i, chunk in enumerate(response):
|
108 |
+
if chunk.choices[0].delta.content is not None:
|
109 |
+
# Append the chunk content to the string
|
110 |
+
content += chunk.choices[0].delta.content
|
111 |
+
|
112 |
+
text_placeholder.markdown(content)
|
113 |
else:
|
114 |
st.write("Please provide an input and (valid) API key")
|
|
|
|