Spaces:
Runtime error
Runtime error
File size: 4,013 Bytes
a5686cb 71ab0a8 a5686cb fa7f0c5 6a89c2d a5686cb 6a89c2d fa7f0c5 a5686cb 5cba42a a5686cb 6a89c2d a5686cb 6a89c2d a5686cb 6a89c2d a5686cb fa7f0c5 2983354 adfbbbe 60ffe88 fa7f0c5 a6ba9ec a5686cb a327c68 2983354 a5686cb adfbbbe a327c68 cbc9e88 cb64d01 a327c68 71ab0a8 a5686cb a327c68 2983354 a5686cb f9aee46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
from transformers import pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import numpy as np
import openai
import os
document_store = FAISSDocumentStore.load(
index_path=f"./documents/climate_gpt.faiss",
config_path=f"./documents/climate_gpt.json",
)
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
system_template = {"role": os.environ["role"], "content": os.environ["content"]}
dense = EmbeddingRetriever(
document_store=document_store,
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
)
def is_climate_change_related(sentence: str) -> bool:
results = classifier(
sequences=sentence,
candidate_labels=["climate change related", "non climate change related"],
)
return results["labels"][np.argmax(results["scores"])] == "climate change related"
def make_pairs(lst):
"""from a list of even lenght, make tupple pairs"""
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
def gen_conv(query: str, history=[system_template], ipcc=True):
"""return (answer:str, history:list[dict], sources:str)"""
retrieve = ipcc and is_climate_change_related(query)
sources = ""
messages = history + [
{"role": "user", "content": query},
]
if retrieve:
docs = dense.retrieve(query=query, top_k=5)
sources = "\n\n".join(
[os.environ["sources"]]
+ [
f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}"
for d in docs
]
)
messages.append({"role": "system", "content": sources})
answer = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.2,
# max_tokens=200,
)["choices"][0]["message"]["content"]
if retrieve:
messages.pop()
# answer = "(top 5 documents retrieved) " + answer
sources = "\n\n".join(
f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}"
for d in docs
)
messages.append({"role": "assistant", "content": answer})
gradio_format = make_pairs([a["content"] for a in messages[1:]])
return gradio_format, messages, sources
def set_openai_api_key(text):
"""Set the api key and return chain.
If no api_key, then None is returned.
"""
openai.api_key = os.environ["api_key"]
if text.startswith("sk-") and len(text) > 10:
openai.api_key = text
return f"You're all set: this is your api key: {openai.api_key}"
# Gradio
with gr.Blocks(title="Eki IPCC Explorer") as demo:
openai.api_key = os.environ["api_key"]
gr.Markdown("# Climate GPT")
with gr.Row():
gr.Markdown("First step: Add your OPENAI api key")
openai_api_key_textbox = gr.Textbox(
placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
show_label=False,
lines=1,
type="password",
)
gr.Markdown("""# Ask me anything, I'm a climate expert""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot()
state = gr.State([system_template])
with gr.Row():
ask = gr.Textbox(
show_label=False, placeholder="Enter text and press enter"
).style(container=False)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("### Sources")
sources_textbox = gr.Textbox(
interactive=False, show_label=False, max_lines=50
)
ask.submit(
fn=gen_conv, inputs=[ask, state], outputs=[chatbot, state, sources_textbox]
)
openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
demo.launch()
|