File size: 4,309 Bytes
a5686cb
 
 
 
 
 
71ab0a8
a5686cb
fa7f0c5
6a89c2d
 
 
 
a5686cb
6a89c2d
fa7f0c5
a5686cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cba42a
a5686cb
6a89c2d
a5686cb
 
 
 
 
 
 
 
 
 
 
 
 
 
6a89c2d
a5686cb
6a89c2d
a5686cb
 
 
 
 
 
 
 
fa7f0c5
2983354
 
 
adfbbbe
 
60ffe88
fa7f0c5
a6ba9ec
a5686cb
a327c68
2983354
a5686cb
adfbbbe
a327c68
12f6ef4
 
 
 
 
 
 
 
a327c68
71ab0a8
a5686cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f6ef4
 
 
 
 
 
 
2983354
 
a5686cb
f9aee46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from transformers import pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import numpy as np
import openai
import os


document_store = FAISSDocumentStore.load(
    index_path=f"./documents/climate_gpt.faiss",
    config_path=f"./documents/climate_gpt.json",
)

classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
system_template = {"role": os.environ["role"], "content": os.environ["content"]}

dense = EmbeddingRetriever(
    document_store=document_store,
    embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    model_format="sentence_transformers",
)


def is_climate_change_related(sentence: str) -> bool:
    results = classifier(
        sequences=sentence,
        candidate_labels=["climate change related", "non climate change related"],
    )
    return results["labels"][np.argmax(results["scores"])] == "climate change related"


def make_pairs(lst):
    """from a list of even lenght, make tupple pairs"""
    return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]


def gen_conv(query: str, history=[system_template], ipcc=True):
    """return (answer:str, history:list[dict], sources:str)"""
    retrieve = ipcc and is_climate_change_related(query)
    sources = ""
    messages = history + [
        {"role": "user", "content": query},
    ]

    if retrieve:
        docs = dense.retrieve(query=query, top_k=5)
        sources = "\n\n".join(
            [os.environ["sources"]]
            + [
                f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}"
                for d in docs
            ]
        )
        messages.append({"role": "system", "content": sources})

    answer = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        temperature=0.2,
        #         max_tokens=200,
    )["choices"][0]["message"]["content"]

    if retrieve:
        messages.pop()
        # answer = "(top 5 documents retrieved) " + answer
        sources = "\n\n".join(
            f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}"
            for d in docs
        )
    messages.append({"role": "assistant", "content": answer})
    gradio_format = make_pairs([a["content"] for a in messages[1:]])

    return gradio_format, messages, sources


def set_openai_api_key(text):
    """Set the api key and return chain.
    If no api_key, then None is returned.
    """
    openai.api_key = os.environ["api_key"]

    if text.startswith("sk-") and len(text) > 10:
        openai.api_key = text
    return f"You're all set: this is your api key: {openai.api_key}"


# Gradio
with gr.Blocks(title="Eki IPCC Explorer") as demo:
    openai.api_key = os.environ["api_key"]
    gr.Markdown("# Climate GPT")
    # with gr.Row():
    #     gr.Markdown("First step: Add your OPENAI api key")
    #     openai_api_key_textbox = gr.Textbox(
    #         placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
    #         show_label=False,
    #         lines=1,
    #         type="password",
    #     )

    gr.Markdown("""# Ask me anything, I'm a climate expert""")
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot()
            state = gr.State([system_template])

            with gr.Row():
                ask = gr.Textbox(
                    show_label=False, placeholder="Enter text and press enter"
                ).style(container=False)

        with gr.Column(scale=1, variant="panel"):

            gr.Markdown("### Sources")
            sources_textbox = gr.Textbox(
                interactive=False, show_label=False, max_lines=50
            )
    ask.submit(
        fn=gen_conv, inputs=[ask, state], outputs=[chatbot, state, sources_textbox]
    )
    with gr.Accordion("Add your personal openai api key", open=False):
        openai_api_key_textbox = gr.Textbox(
            placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
            show_label=False,
            lines=1,
            type="password",
        )
    openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
    openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])

demo.launch()