import gradio as gr from transformers import pipeline from haystack.document_stores import FAISSDocumentStore from haystack.nodes import EmbeddingRetriever import numpy as np import openai import os document_store = FAISSDocumentStore.load( index_path=f"./documents/climate_gpt.faiss", config_path=f"./documents/climate_gpt.json", ) classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") system_template = { "role": "system", "content": "You have been a climate change expert for 30 years. You answer questions about climate change in an educationnal and concise manner. Whenever possible your answers are backed up by facts and numbers from scientific reports.", } dense = EmbeddingRetriever( document_store=document_store, embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", model_format="sentence_transformers", ) def is_climate_change_related(sentence: str) -> bool: results = classifier( sequences=sentence, candidate_labels=["climate change related", "non climate change related"], ) return results["labels"][np.argmax(results["scores"])] == "climate change related" def make_pairs(lst): """from a list of even lenght, make tupple pairs""" return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)] def gen_conv(query: str, history=[system_template], ipcc=True): """return (answer:str, history:list[dict], sources:str)""" retrieve = ipcc and is_climate_change_related(query) sources = "" messages = history + [ {"role": "user", "content": query}, ] if retrieve: docs = dense.retrieve(query=query, top_k=5) sources = "\n\n".join( [ "If relevant, use those extracts in your answer and give the reference of the information you used." ] + [ f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}" for d in docs ] ) messages.append({"role": "system", "content": sources}) answer = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.2, # max_tokens=200, )["choices"][0]["message"]["content"] if retrieve: messages.pop() # answer = "(top 5 documents retrieved) " + answer sources = "\n\n".join( f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}" for d in docs ) messages.append({"role": "assistant", "content": answer}) gradio_format = make_pairs([a["content"] for a in messages[1:]]) return gradio_format, messages, sources def set_openai_api_key(api_key): """Set the api key and return chain. If no api_key, then None is returned. """ os.environ["OPENAI_API_KEY"] = api_key openai.api_key = api_key return f"You're all set: this is your api key: {openai.api_key}" # Gradio with gr.Blocks(title="Eki IPCC Explorer") as demo: gr.Markdown("# Climate GPT") with gr.Row(): gr.Markdown("First step: Add your OPENAI api key") openai_api_key_textbox = gr.Textbox( placeholder="Paste your OpenAI API key (sk-...) and hit Enter", show_label=False, lines=1, type="password", ) gr.Markdown("""# Ask me anything, I'm a climate expert""") with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot() state = gr.State([system_template]) with gr.Row(): ask = gr.Textbox( show_label=False, placeholder="Enter text and press enter" ).style(container=False) with gr.Column(scale=1, variant="panel"): gr.Markdown("### Sources") sources_textbox = gr.Textbox( interactive=False, show_label=False, max_lines=50 ) ask.submit( fn=gen_conv, inputs=[ask, state], outputs=[chatbot, state, sources_textbox] ) openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox]) openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox]) demo.launch()