# Pinecone # More info at https://docs.pinecone.io/docs/langchain # And https://python.langchain.com/docs/integrations/vectorstores/pinecone import pinecone from langchain.vectorstores import Pinecone # LOAD ENVIRONMENT VARIABLES from dotenv import load_dotenv import os load_dotenv() def get_pinecone_vectorstore(embeddings,text_key = "content"): # initialize pinecone pinecone.init( api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io environment=os.getenv("PINECONE_API_ENVIRONMENT"), # next to api key in console ) index_name = os.getenv("PINECONE_API_INDEX") vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key) return vectorstore # def get_pinecone_retriever(vectorstore,k = 10,namespace = "vectors",sources = ["IPBES","IPCC"]): # assert isinstance(sources,list) # # Check if all elements in the list are either IPCC or IPBES # filter = { # "source": { "$in":sources}, # } # retriever = vectorstore.as_retriever(search_kwargs={ # "k": k, # "namespace":"vectors", # "filter":filter # }) # return retriever