Spaces:
Build error
Build error
import streamlit as st | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import requests | |
import face_recognition | |
from keras.models import load_model | |
import os | |
# Set page title and description | |
st.set_page_config( | |
page_title="Face Recognition Attendance System With Emotion Detection", | |
page_icon="📷", | |
layout="centered", | |
initial_sidebar_state="collapsed" | |
) | |
st.title("Attendance System Using Face Recognition and Emotion Detection 📷") | |
st.markdown("This app recognizes faces in an image, detects emotions, and updates attendance records with the current timestamp.") | |
# Load emotion detection model | |
def load_emotion_model(): | |
model = load_model('CNN_Model_acc_75.h5') | |
return model | |
emotion_model = load_emotion_model() | |
# Emotion labels | |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] | |
# Load known faces and classnames | |
Images = [] | |
classnames = [] | |
directory = "photos" | |
myList = os.listdir(directory) | |
for cls in myList: | |
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]: | |
img_path = os.path.join(directory, cls) | |
curImg = cv2.imread(img_path) | |
Images.append(curImg) | |
classnames.append(os.path.splitext(cls)[0]) | |
# Function to update attendance data | |
def update_data(name, emotion): | |
url = "https://huggingface.glitch.me" | |
url1 = "/update" | |
data = {'name': name, 'emotion': emotion} | |
try: | |
response = requests.post(url + url1, data=data) | |
if response.status_code == 200: | |
st.success("Attendance updated successfully!") | |
else: | |
st.warning("Failed to update attendance!") | |
except Exception as e: | |
st.error(f"Error updating attendance: {e}") | |
# Function to display image with overlay | |
def display_image_with_overlay(image, name, emotion): | |
cv2.putText(image, f"{name} is feeling {emotion}", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) | |
st.image(image, use_column_width=True, output_format="PNG") | |
# Load images for face recognition | |
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images] | |
# Upload image using the file uploader | |
img_file_buffer = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if img_file_buffer is not None: | |
test_image = Image.open(img_file_buffer) | |
image = np.asarray(test_image) | |
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25) | |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) | |
facesCurFrame = face_recognition.face_locations(imgS) | |
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) | |
name = "Unknown" # Default name for unknown faces | |
match_found = False # Flag to track if a match is found | |
# Emotion detection part | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
emotion = "Neutral" # Default emotion | |
if len(encodesCurFrame) > 0: | |
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): | |
# Emotion detection | |
y1, x2, y2, x1 = faceLoc | |
roi = imgS[y1:y2, x1:x2] | |
roi = cv2.resize(roi, (48, 48)) # Resize to fit model | |
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) | |
roi = np.expand_dims(roi, axis=0) / 255.0 # Preprocess the image | |
emotion_predictions = emotion_model.predict(roi) | |
emotion = emotion_labels[np.argmax(emotion_predictions)] | |
# Face recognition logic | |
matches = face_recognition.compare_faces(encodeListknown, encodeFace) | |
faceDis = face_recognition.face_distance(encodeListknown, encodeFace) | |
matchIndex = np.argmin(faceDis) | |
if matches[matchIndex]: | |
name = classnames[matchIndex].upper() | |
update_data(name, emotion) | |
match_found = True | |
y1, x2, y2, x1 = faceLoc | |
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4 | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED) | |
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) | |
display_image_with_overlay(image, name, emotion) | |
if match_found: | |
st.success(f"Face recognized: {name} and Emotion: {emotion}") | |
else: | |
st.warning("Face not detected, or no match found in the database.") | |
else: | |
st.warning("No faces detected in the image. Face recognition failed.") | |