LuChengTHU commited on
Commit
d461b4f
Β·
1 Parent(s): a849e1d
Files changed (1) hide show
  1. app.py +18 -15
app.py CHANGED
@@ -58,10 +58,9 @@ current_model_path = current_model.path
58
 
59
  auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
60
 
61
- if is_colab:
62
- pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
63
 
64
- else: # download all models
65
  vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token)
66
  for model in models:
67
  try:
@@ -71,10 +70,20 @@ else: # download all models
71
  except:
72
  models.remove(model)
73
  pipe = models[0].pipe_t2i
74
-
75
- if torch.cuda.is_available():
76
  pipe = pipe.to("cuda")
77
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  device = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"
79
 
80
  def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
@@ -100,11 +109,8 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
100
  if model_path != current_model_path or last_mode != "txt2img":
101
  current_model_path = model_path
102
 
103
- if is_colab or current_model == models[0]:
104
- pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, use_auth_token=auth_token)
105
- else:
106
- pipe.to("cpu")
107
- pipe = current_model.pipe_t2i
108
 
109
  if torch.cuda.is_available():
110
  pipe = pipe.to("cuda")
@@ -131,11 +137,8 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
131
  if model_path != current_model_path or last_mode != "img2img":
132
  current_model_path = model_path
133
 
134
- if is_colab or current_model == models[0]:
135
- pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, use_auth_token=auth_token)
136
- else:
137
- pipe.to("cpu")
138
- pipe = current_model.pipe_i2i
139
 
140
  if torch.cuda.is_available():
141
  pipe = pipe.to("cuda")
 
58
 
59
  auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
60
 
61
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
 
62
 
63
+ if torch.cuda.is_available():
64
  vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token)
65
  for model in models:
66
  try:
 
70
  except:
71
  models.remove(model)
72
  pipe = models[0].pipe_t2i
 
 
73
  pipe = pipe.to("cuda")
74
 
75
+ else:
76
+ vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", use_auth_token=auth_token)
77
+ for model in models:
78
+ try:
79
+ unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", use_auth_token=auth_token)
80
+ model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
81
+ model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
82
+ except:
83
+ models.remove(model)
84
+ pipe = models[0].pipe_t2i
85
+ pipe = pipe.to("cpu")
86
+
87
  device = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"
88
 
89
  def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
 
109
  if model_path != current_model_path or last_mode != "txt2img":
110
  current_model_path = model_path
111
 
112
+ pipe.to("cpu")
113
+ pipe = current_model.pipe_t2i
 
 
 
114
 
115
  if torch.cuda.is_available():
116
  pipe = pipe.to("cuda")
 
137
  if model_path != current_model_path or last_mode != "img2img":
138
  current_model_path = model_path
139
 
140
+ pipe.to("cpu")
141
+ pipe = current_model.pipe_i2i
 
 
 
142
 
143
  if torch.cuda.is_available():
144
  pipe = pipe.to("cuda")