Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,42 @@
|
|
1 |
#############################################################################################################################
|
2 |
# Filename : app.py
|
3 |
# Description: A Streamlit application to detect facial expressions from images and provide responses.
|
4 |
-
# Author :
|
5 |
#
|
6 |
-
# Copyright © 2024 by
|
7 |
#############################################################################################################################
|
8 |
|
9 |
# Import libraries.
|
10 |
import os # Load environment variable(s).
|
11 |
-
import requests # Send HTTP GET request to Hugging Face models for inference.
|
12 |
import streamlit as st # Build the GUI of the application.
|
13 |
from PIL import Image # Handle image operations.
|
14 |
from dotenv import load_dotenv # Load environment variables.
|
15 |
-
import
|
16 |
-
from transformers import AutoProcessor, AutoModelForImageClassification # Hugging Face models.
|
17 |
import openai # OpenAI API for generating text responses.
|
18 |
|
19 |
#############################################################################################################################
|
20 |
# Load environment variable(s).
|
21 |
load_dotenv()
|
22 |
|
23 |
-
# Set up the Hugging Face API for emotion detection.
|
24 |
-
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
|
25 |
# Set up OpenAI API key.
|
26 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
27 |
|
28 |
-
# Load the processor and model for facial expression recognition.
|
29 |
-
processor = AutoProcessor.from_pretrained("trpakov/vit-face-expression")
|
30 |
-
model = AutoModelForImageClassification.from_pretrained("trpakov/vit-face-expression")
|
31 |
-
|
32 |
#############################################################################################################################
|
33 |
-
# Function to query the facial expression recognition model.
|
34 |
def query_emotion(image):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Retrieve the label names from the model.
|
47 |
-
label_names = model.config.id2label # Mapping of indices to emotion labels.
|
48 |
-
predicted_label = label_names[predicted_class_idx] # Get the predicted label.
|
49 |
-
|
50 |
-
return predicted_label
|
51 |
|
52 |
#############################################################################################################################
|
53 |
-
# Function to generate a response using OpenAI based on detected emotion
|
54 |
def generate_text_based_on_mood(emotion, response_type):
|
55 |
try:
|
56 |
if response_type == "Joke":
|
@@ -103,23 +89,24 @@ def main():
|
|
103 |
|
104 |
# Detect facial expression.
|
105 |
emotion = query_emotion(image)
|
106 |
-
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
|
124 |
#############################################################################################################################
|
125 |
# Run the application.
|
|
|
1 |
#############################################################################################################################
|
2 |
# Filename : app.py
|
3 |
# Description: A Streamlit application to detect facial expressions from images and provide responses.
|
4 |
+
# Author : Lucas Yao
|
5 |
#
|
6 |
+
# Copyright © 2024 by Lucas Yao
|
7 |
#############################################################################################################################
|
8 |
|
9 |
# Import libraries.
|
10 |
import os # Load environment variable(s).
|
|
|
11 |
import streamlit as st # Build the GUI of the application.
|
12 |
from PIL import Image # Handle image operations.
|
13 |
from dotenv import load_dotenv # Load environment variables.
|
14 |
+
from fer import FER # Import the FER model for facial expression recognition.
|
|
|
15 |
import openai # OpenAI API for generating text responses.
|
16 |
|
17 |
#############################################################################################################################
|
18 |
# Load environment variable(s).
|
19 |
load_dotenv()
|
20 |
|
|
|
|
|
21 |
# Set up OpenAI API key.
|
22 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
23 |
|
|
|
|
|
|
|
|
|
24 |
#############################################################################################################################
|
25 |
+
# Function to query the facial expression recognition model using FER.
|
26 |
def query_emotion(image):
|
27 |
+
detector = FER()
|
28 |
+
emotions = detector.detect_emotions(image)
|
29 |
+
|
30 |
+
if emotions:
|
31 |
+
# Get the emotion with the highest score.
|
32 |
+
dominant_emotion = max(emotions[0]['emotions'], key=emotions[0]['emotions'].get)
|
33 |
+
return dominant_emotion
|
34 |
+
else:
|
35 |
+
st.error("Could not detect any emotion.")
|
36 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
#############################################################################################################################
|
39 |
+
# Function to generate a response using OpenAI based on detected emotion.
|
40 |
def generate_text_based_on_mood(emotion, response_type):
|
41 |
try:
|
42 |
if response_type == "Joke":
|
|
|
89 |
|
90 |
# Detect facial expression.
|
91 |
emotion = query_emotion(image)
|
92 |
+
if emotion:
|
93 |
+
st.write(f"Detected emotion: {emotion}")
|
94 |
|
95 |
+
# Dropdown for selecting response type.
|
96 |
+
response_type = st.selectbox("Select the type of response:", ["Joke", "Motivational Message"])
|
97 |
|
98 |
+
# Generate text based on detected emotion and user preference.
|
99 |
+
if st.button("Get Response"):
|
100 |
+
message = generate_text_based_on_mood(emotion, response_type)
|
101 |
+
st.write("Here's your response:")
|
102 |
+
st.write(message)
|
103 |
|
104 |
+
# Convert the generated message to audio.
|
105 |
+
audio_file = text_to_speech(message)
|
106 |
|
107 |
+
# Provide an audio player in the Streamlit app if audio file exists.
|
108 |
+
if audio_file:
|
109 |
+
st.audio(audio_file) # Streamlit will handle playback.
|
110 |
|
111 |
#############################################################################################################################
|
112 |
# Run the application.
|