Lucasstranger1 commited on
Commit
e1d89e6
·
verified ·
1 Parent(s): 3648473

create app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ import requests
4
+ import pyttsx3
5
+ from transformers import pipeline
6
+ from PIL import Image
7
+ from dotenv import load_dotenv
8
+
9
+ # Load environment variables from .env file
10
+ load_dotenv()
11
+
12
+ # Set up the Hugging Face API URL and your API key
13
+ API_URL = "https://api-inference.huggingface.co/models/trpakov/vit-face-expression"
14
+ headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
15
+
16
+ # Function to query the Hugging Face model for facial expression
17
+ def query(filename):
18
+ with open(filename, "rb") as f:
19
+ data = f.read()
20
+ response = requests.post(API_URL, headers=headers, data=data)
21
+
22
+ if response.status_code == 200:
23
+ return response.json()
24
+ else:
25
+ st.error("Error detecting facial expression: " + response.text)
26
+ return None
27
+
28
+ # Function to generate a joke or uplifting text based on the mood
29
+ def generate_text_based_on_mood(emotion):
30
+ generator = pipeline('text-generation', model='gpt2')
31
+ prompt = f"Tell a joke that would cheer someone who is feeling {emotion}."
32
+ response = generator(prompt, max_length=50, num_return_sequences=1)
33
+ return response[0]['generated_text']
34
+
35
+ # Function to convert text to speech
36
+ def text_to_speech(text):
37
+ engine = pyttsx3.init()
38
+ engine.say(text)
39
+ engine.runAndWait()
40
+
41
+ # Streamlit UI
42
+ st.title("Facial Expression Mood Detector")
43
+ st.write("Upload an image of a face to detect mood and receive uplifting messages or jokes.")
44
+
45
+ # Upload image
46
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
47
+
48
+ if uploaded_file is not None:
49
+ # Load and display the image
50
+ image = Image.open(uploaded_file)
51
+ st.image(image, caption='Uploaded Image', use_column_width=True)
52
+
53
+ # Save the uploaded file temporarily
54
+ with open("uploaded_image.jpg", "wb") as f:
55
+ f.write(uploaded_file.getbuffer())
56
+
57
+ # Detect facial expression
58
+ expression_output = query("uploaded_image.jpg")
59
+ if expression_output:
60
+ emotion = expression_output[0]['label'] # Adjust as per the actual response structure
61
+ st.write(f"Detected emotion: {emotion}")
62
+
63
+ # Generate text based on detected emotion
64
+ joke = generate_text_based_on_mood(emotion)
65
+ st.write("Here's something to cheer you up:")
66
+ st.write(joke)
67
+
68
+ # Convert the generated joke to audio
69
+ text_to_speech(joke)