############################################################################################################################# # Filename : app.py # Description: A Streamlit application to detect facial expressions from images and provide responses. # Author : Lucas Yao # # Copyright © 2024 by Lucas Yao ############################################################################################################################# # Import libraries. import os # Load environment variable(s). import streamlit as st # Build the GUI of the application. from PIL import Image # Handle image operations. from dotenv import load_dotenv # Load environment variables. from fer import FER # Import the FER model for facial expression recognition. import numpy as np # Import NumPy for array handling import openai # OpenAI API for generating text responses. ############################################################################################################################# # Load environment variable(s). load_dotenv() # Set up OpenAI API key. openai.api_key = os.getenv('OPENAI_API_KEY') ############################################################################################################################# # Function to query the facial expression recognition model using FER. def query_emotion(image): # Convert the PIL Image to a NumPy array image_np = np.array(image) detector = FER() emotions = detector.detect_emotions(image_np) if emotions: # Get the emotion with the highest score. dominant_emotion = max(emotions[0]['emotions'], key=emotions[0]['emotions'].get) return dominant_emotion else: st.error("Could not detect any emotion.") return None ############################################################################################################################# # Function to generate a response using OpenAI based on detected emotion. def generate_text_based_on_mood(emotion, response_type): try: if response_type == "Joke": prompt = f"Generate a light-hearted joke for someone who is feeling {emotion}." elif response_type == "Motivational Message": prompt = f"Generate a motivational message for someone who is feeling {emotion}." elif response_type == "Compliment": prompt = f"Generate a heartfelt compliment for someone who is feeling {emotion}." elif response_type == "Song Recommendation": prompt = f"Recommend a song that would suit someone who is feeling {emotion}. Include the song title and artist." # Call OpenAI's API using GPT-4. response = openai.ChatCompletion.create( model="gpt-4", # Specify the GPT-4 model messages=[ {"role": "user", "content": prompt} ] ) # Extract the generated text. generated_text = response['choices'][0]['message']['content'] return generated_text.strip() except Exception as e: st.error(f"Error generating text: {e}") return "Sorry, I couldn't come up with a message at this moment." ############################################################################################################################# # Function to convert text to speech using gTTS. def text_to_speech(text): from gtts import gTTS try: tts = gTTS(text, lang='en') audio_file = "output.mp3" tts.save(audio_file) # Save the audio file. return audio_file except Exception as e: st.error(f"Error with TTS: {e}") return None ############################################################################################################################# # Main function to create the Streamlit web application. def main(): st.title("Facial Expression Mood Detector") st.write("Upload an image of a face to detect mood and receive a response.") # Upload image. uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Load and display the image. image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) # Detect facial expression. emotion = query_emotion(image) if emotion: st.write(f"Detected emotion: {emotion}") # Dropdown for selecting response type. response_type = st.selectbox("Select the type of response:", ["Joke", "Motivational Message", "Compliment", "Song Recommendation"]) # Generate text based on detected emotion and user preference. if st.button("Get Response"): message = generate_text_based_on_mood(emotion, response_type) # Display the generated message (song recommendation or other response) st.write("Here's your response:") st.write(message) # Convert the generated message to audio if it's not a song recommendation (optional) if response_type != "Song Recommendation": audio_file = text_to_speech(message) if audio_file: st.audio(audio_file) # Streamlit will handle playback. ############################################################################################################################# # Run the application. if __name__ == "__main__": main()