import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import accelerate # Load the model and tokenizer model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0" accelerator = accelerate.Accelerator() model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=False, device_map="auto", offload_folder="/tmp") model = accelerator.prepare(model) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_prompt(instruction, user_input): """ Generates a prompt for the model to ensure it responds with the intent in the same language as the input. """ return f""" ### Instruction: {instruction} ### Input: {user_input} ### Response: """ def get_model_response(user_input, instruction="Identify and summarize the core intent in the same language:"): """ Gets the model's response, ensuring it matches the input language and focuses on extracting a concise intent. """ input_text = generate_prompt(instruction, user_input) inputs = tokenizer([input_text], return_tensors="pt") with accelerator.distribute_inputs_to_prepared(model.device_map, inputs): outputs = model.generate(**inputs, max_new_tokens=300, use_cache=True) response = tokenizer.batch_decode(accelerator.gather(outputs))[0] return response.split("### Response:")[-1].strip() # Gradio interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text") instruction = gr.Textbox(label="Instruction", value="Identify and summarize the core intent in the same language:") output_text = gr.Textbox(label="Response") input_btn = gr.Button("Submit") input_btn.click(get_model_response, inputs=[input_text, instruction], outputs=output_text) demo.launch()