Spaces:
Sleeping
Sleeping
pip install transformers | |
pip install --upgrade pip | |
import gradio as gr | |
from transformers import pipeline | |
# Load the model | |
model_name = "knowledgator/comprehend_it-base" | |
classifier = pipeline("zero-shot-classification", model=model_name, device=0) | |
# Function to classify feedback | |
def classify_feedback(feedback_text): | |
# Classify feedback using the loaded model | |
labels = ["Value", "Facilities", "Experience", "Functionality", "Quality"] | |
result = classifier(feedback_text, labels, multi_label=True) | |
# Get the top two labels associated with the feedback | |
top_labels = [label for label, _ in result["labels"][:2]] | |
scores = [score for _, score in result["scores"][:2]] | |
return {top_labels[i]: scores[i] for i in range(len(top_labels))} | |
# Create Gradio interface | |
feedback_textbox = gr.inputs.Textbox(lines=5, label="Enter your feedback:") | |
feedback_output = gr.outputs.Textbox(label="Top 2 Labels with Scores:") | |
gr.Interface( | |
fn=classify_feedback, | |
inputs=feedback_textbox, | |
outputs=feedback_output, | |
title="Feedback Classifier", | |
description="Enter your feedback and get the top 2 associated labels with scores.", | |
capture_session=True | |
).launch() | |