import gradio as gr from transformers import pipeline # Load the model model_name = "knowledgator/comprehend_it-base" classifier = pipeline("zero-shot-classification", model=model_name, device=0) # Function to classify feedback def classify_feedback(feedback_text): # Classify feedback using the loaded model labels = ["Value", "Facilities", "Experience", "Functionality", "Quality"] result = classifier(feedback_text, labels, multi_label=True) # Get the top two labels associated with the feedback top_labels = [label for label, _ in result["labels"][:2]] scores = [score for _, score in result["scores"][:2]] return {top_labels[i]: scores[i] for i in range(len(top_labels))} # Create Gradio interface feedback_textbox = gr.inputs.Textbox(lines=5, label="Enter your feedback:") feedback_output = gr.outputs.Textbox(label="Top 2 Labels with Scores:") gr.Interface( fn=classify_feedback, inputs=feedback_textbox, outputs=feedback_output, title="Feedback Classifier", description="Enter your feedback and get the top 2 associated labels with scores.", capture_session=True ).launch()