from transformers import pipeline from datasets import load_dataset # Initialize the pipeline with the Llama 3.2 model model = pipeline("text-generation", model="meta-llama/Llama-3.2-1B") def load_data(): """ Load the dataset from the specified source. Returns: - Dataset object containing the loaded data. """ try: ds = load_dataset("neuralwork/arxiver") return ds except Exception as e: print(f"An error occurred while loading the dataset: {e}") return None def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=1.0): """ Generate text using the Llama 3.2 model. Parameters: - prompt (str): The input prompt for text generation. - max_length (int): The maximum length of the generated text. - num_return_sequences (int): The number of sequences to return. - temperature (float): Controls the randomness of predictions. Lower values make the output more deterministic. Returns: - List of generated text sequences. """ try: output = model(prompt, max_length=max_length, num_return_sequences=num_return_sequences, temperature=temperature) return [o['generated_text'] for o in output] except Exception as e: print(f"An error occurred: {e}") return [] # Example usage if __name__ == "__main__": # Load the dataset dataset = load_data() if dataset: print("Dataset loaded successfully.") # You can access specific splits of the dataset, e.g., dataset['train'] print(dataset['train'][0]) # Print the first example from the training set prompt = "Describe the process of synaptic transmission in the brain." generated_texts = generate_text(prompt, max_length=100, num_return_sequences=3, temperature=0.7) for i, text in enumerate(generated_texts): print(f"Generated Text {i+1}:\n{text}\n")