Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +56 -0
- function.py +60 -0
- htmlTemplate.py +56 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from function import *
|
2 |
+
import streamlit as st
|
3 |
+
from htmlTemplate import css, bot_template, user_template
|
4 |
+
|
5 |
+
def handle_user_input(user_question):
|
6 |
+
if "conversation" not in st.session_state:
|
7 |
+
st.session_state.conversation = None
|
8 |
+
if "chat_history" not in st.session_state:
|
9 |
+
st.session_state.chat_history = []
|
10 |
+
|
11 |
+
response = st.session_state.conversation({'question': user_question, 'chat_history': st.session_state.chat_history})
|
12 |
+
st.session_state.chat_history = response['chat_history']
|
13 |
+
|
14 |
+
for i, message in enumerate(st.session_state.chat_history):
|
15 |
+
if i % 2 == 0:
|
16 |
+
st.markdown(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
17 |
+
else:
|
18 |
+
st.markdown(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
st.set_page_config(page_title="ChatBot with Multiple PDF", layout="wide", page_icon=":robot_face:") # Set layout to wide
|
23 |
+
st.write(css, unsafe_allow_html=True)
|
24 |
+
|
25 |
+
# Improved sidebar layout
|
26 |
+
with st.sidebar:
|
27 |
+
st.title("ChatBot Settings 🛠️")
|
28 |
+
pdf_docs = st.file_uploader("Upload PDF documents", accept_multiple_files=True)
|
29 |
+
if st.button("Process or Reset Conversation 🔄"):
|
30 |
+
with st.spinner("Processing..."):
|
31 |
+
if pdf_docs:
|
32 |
+
# get pdf text
|
33 |
+
documents = read_multiple_pdf(pdf_docs)
|
34 |
+
# get the text chunks
|
35 |
+
chunks = chunk_docs(documents, chunk_size=500, chunk_overlap=50)
|
36 |
+
# create vector store
|
37 |
+
vector_db = embedding_chunks(chunks)
|
38 |
+
# create conversation chain
|
39 |
+
st.session_state.conversation = chain_conversation(vector_db)
|
40 |
+
else:
|
41 |
+
st.warning("Please upload at least one PDF before processing.")
|
42 |
+
|
43 |
+
# Improved main content layout
|
44 |
+
st.title("ChatBot with Multiple PDF 🤖")
|
45 |
+
st.markdown("---")
|
46 |
+
|
47 |
+
user_question = st.text_input("Ask a question about your documents:", key="user_input_key", value="", disabled=not pdf_docs)
|
48 |
+
if st.button("Ask 🤔") or user_question:
|
49 |
+
if not pdf_docs:
|
50 |
+
st.warning("Please upload PDFs and click 'Process' before asking questions.")
|
51 |
+
else:
|
52 |
+
handle_user_input(user_question)
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
main()
|
function.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.llms import HuggingFaceHub
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
## Read Multiple PDF files
|
13 |
+
def read_multiple_pdf(files):
|
14 |
+
if type(files) == str:
|
15 |
+
files = list("document\yolo.pdf".split(" "))
|
16 |
+
texts = ""
|
17 |
+
for file in files:
|
18 |
+
docs = PdfReader(file)
|
19 |
+
for text in docs.pages:
|
20 |
+
texts += (text.extract_text())
|
21 |
+
return texts
|
22 |
+
|
23 |
+
|
24 |
+
## Split PDF into chunks
|
25 |
+
def chunk_docs(document, chunk_size = 500, chunk_overlap = 50, separators="\n"):
|
26 |
+
"""
|
27 |
+
Split a document into smaller chunks of text.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
document (str): The document to be chunked.
|
31 |
+
chunk_size (int, optional): The size of each chunk in characters. Defaults to 500.
|
32 |
+
chunk_overlap (int, optional): The overlap between adjacent chunks in characters. Defaults to 50.
|
33 |
+
separators (str, optional): The separators used to split the document into chunks. Defaults to "\\n".
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
str: The chunked document.
|
37 |
+
"""
|
38 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
39 |
+
separators=separators,
|
40 |
+
chunk_size = chunk_size,
|
41 |
+
chunk_overlap = chunk_overlap
|
42 |
+
)
|
43 |
+
chunk = text_splitter.split_text(document)
|
44 |
+
return chunk
|
45 |
+
|
46 |
+
## Embeds the Data
|
47 |
+
def embedding_chunks(chunk, model_name = "sentence-transformers/all-MiniLM-L12-v2"):
|
48 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
49 |
+
vector_stores = FAISS.from_texts(chunk, embeddings)
|
50 |
+
return vector_stores
|
51 |
+
|
52 |
+
|
53 |
+
## setup conversational chain
|
54 |
+
def chain_conversation(vector_stores,config = {'max_new_tokens': 256, 'temperature': 0.1},model_repo = "mistralai/Mixtral-8x7B-Instruct-v0.1"):
|
55 |
+
llm = HuggingFaceHub(repo_id = model_repo, model_kwargs = config)
|
56 |
+
memory = ConversationBufferMemory(memory_key= "chat_history", return_messages=True)
|
57 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(llm= llm,
|
58 |
+
retriever= vector_stores.as_retriever(search_kwargs={"k": 10}),
|
59 |
+
memory= memory)
|
60 |
+
return conversation_chain
|
htmlTemplate.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Updated CSS
|
2 |
+
css = '''
|
3 |
+
<style>
|
4 |
+
.chat-message {
|
5 |
+
padding: 1rem;
|
6 |
+
border-radius: 0.5rem;
|
7 |
+
margin-bottom: 1rem;
|
8 |
+
display: flex;
|
9 |
+
border: 1px solid #d3d3d3; /* Add a subtle border */
|
10 |
+
}
|
11 |
+
|
12 |
+
.chat-message.user {
|
13 |
+
background-color: #2b313e;
|
14 |
+
}
|
15 |
+
|
16 |
+
.chat-message.bot {
|
17 |
+
background-color: #475063;
|
18 |
+
}
|
19 |
+
|
20 |
+
.chat-message .avatar {
|
21 |
+
width: 15%; /* Adjust avatar size */
|
22 |
+
}
|
23 |
+
|
24 |
+
.chat-message .avatar img {
|
25 |
+
max-width: 60px;
|
26 |
+
max-height: 60px;
|
27 |
+
border-radius: 50%;
|
28 |
+
object-fit: cover;
|
29 |
+
}
|
30 |
+
|
31 |
+
.chat-message .message {
|
32 |
+
width: 85%; /* Adjust message width */
|
33 |
+
padding: 0.75rem;
|
34 |
+
color: #fff;
|
35 |
+
}
|
36 |
+
</style>
|
37 |
+
'''
|
38 |
+
|
39 |
+
# Updated Templates
|
40 |
+
bot_template = '''
|
41 |
+
<div class="chat-message bot">
|
42 |
+
<div class="avatar">
|
43 |
+
<img src="https://i.ibb.co/3pvQJ2B/bot-icon.jpg">
|
44 |
+
</div>
|
45 |
+
<div class="message">{{MSG}}</div>
|
46 |
+
</div>
|
47 |
+
'''
|
48 |
+
|
49 |
+
user_template = '''
|
50 |
+
<div class="chat-message user">
|
51 |
+
<div class="avatar">
|
52 |
+
<img src="https://i.ibb.co/HY8rRpL/human.jpg">
|
53 |
+
</div>
|
54 |
+
<div class="message">{{MSG}}</div>
|
55 |
+
</div>
|
56 |
+
'''
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
python-dotenv
|
3 |
+
langchain
|
4 |
+
streamlit
|
5 |
+
sentence-transformers
|
6 |
+
PyPDF2
|
7 |
+
faiss-cpu
|
8 |
+
dotenv
|