Spaces:
Runtime error
Runtime error
Commit
·
a57ce2c
1
Parent(s):
ab8268b
done
Browse files- app.py +145 -104
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,115 +1,156 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
)
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
else:
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
except Exception as e:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return "", "Invalid YouTube URL provided.", None
|
30 |
-
|
31 |
-
# Add network test result to debug info
|
32 |
-
test_result = test_network()
|
33 |
-
debug_info += f"Network test result: {test_result}\n"
|
34 |
-
|
35 |
-
# Include package versions
|
36 |
-
import gradio
|
37 |
-
import yt_dlp
|
38 |
-
import requests
|
39 |
-
debug_info += f"Package versions:\n"
|
40 |
-
debug_info += f"gradio: {gradio.__version__}\n"
|
41 |
-
debug_info += f"yt-dlp: {yt_dlp.version.__version__}\n"
|
42 |
-
debug_info += f"requests: {requests.__version__}\n"
|
43 |
|
|
|
|
|
|
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
'--skip-download',
|
49 |
-
'--write-subs',
|
50 |
-
'--sub-lang', 'en',
|
51 |
-
'--sub-format', 'vtt',
|
52 |
-
'--output', '%(id)s.%(ext)s',
|
53 |
-
link
|
54 |
-
]
|
55 |
-
|
56 |
-
result = subprocess.run(command, capture_output=True, text=True)
|
57 |
-
|
58 |
-
if result.returncode != 0:
|
59 |
-
transcript_text = "Failed to download subtitles using yt-dlp."
|
60 |
-
debug_info += f"yt-dlp error: {result.stderr}\n"
|
61 |
-
return transcript_text, debug_info, thumbnail_url
|
62 |
-
|
63 |
-
# Extract video ID from URL
|
64 |
-
video_id_match = re.search(r'v=([A-Za-z0-9_-]{11})', link)
|
65 |
-
if video_id_match:
|
66 |
-
video_id = video_id_match.group(1)
|
67 |
-
debug_info += f"Video ID: {video_id}\n"
|
68 |
-
thumbnail_url = f"https://img.youtube.com/vi/{video_id}/maxresdefault.jpg"
|
69 |
-
debug_info += f"Thumbnail URL: {thumbnail_url}\n"
|
70 |
else:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# Read the downloaded subtitle file
|
75 |
-
subtitle_file = f"{video_id}.en.vtt"
|
76 |
-
try:
|
77 |
-
with open(subtitle_file, 'r', encoding='utf-8') as f:
|
78 |
-
transcript_text = f.read()
|
79 |
-
|
80 |
-
# Process the VTT file to extract plain text
|
81 |
-
transcript_text = re.sub(r'WEBVTT\n\n', '', transcript_text)
|
82 |
-
transcript_text = re.sub(r'\d+\n', '', transcript_text)
|
83 |
-
transcript_text = re.sub(r'\d{2}:\d{2}:\d{2}\.\d{3} --> \d{2}:\d{2}:\d{2}\.\d{3}\n', '', transcript_text)
|
84 |
-
transcript_text = transcript_text.strip()
|
85 |
-
|
86 |
-
debug_info += "Transcript fetched using yt-dlp subprocess.\n"
|
87 |
-
except FileNotFoundError:
|
88 |
-
transcript_text = "Subtitle file not found."
|
89 |
-
debug_info += "Subtitle file was not found after yt-dlp execution.\n"
|
90 |
-
except Exception as e:
|
91 |
-
transcript_text = f"An error occurred while reading subtitles: {e}"
|
92 |
-
debug_info += f"Error reading subtitles: {e}\n"
|
93 |
-
debug_info += traceback.format_exc()
|
94 |
except Exception as e:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
import sys
|
9 |
+
|
10 |
+
print(f"Gradio version: {gr.__version__}")
|
11 |
+
print(f"Gradio location: {gr.__file__}")
|
12 |
+
print(f"Python executable: {sys.executable}")
|
13 |
+
|
14 |
+
# Ensure that the script uses CUDA if available
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
print(f"Using device: {device}")
|
17 |
+
|
18 |
+
# Load the Stable Diffusion model
|
19 |
+
model_id = "runwayml/stable-diffusion-v1-5" # Updated model ID for better accessibility
|
20 |
+
try:
|
21 |
+
stable_diffusion = StableDiffusionPipeline.from_pretrained(
|
22 |
+
model_id,
|
23 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
24 |
+
).to(device)
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error loading the model: {e}")
|
27 |
+
print("Ensure you have the correct model ID and access rights.")
|
28 |
+
exit(1)
|
29 |
+
|
30 |
+
def describe_audio(audio_path):
|
31 |
+
"""
|
32 |
+
Generate a textual description based on audio features.
|
33 |
+
|
34 |
+
Parameters:
|
35 |
+
audio_path (str): Path to the audio file.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
str: Generated description.
|
39 |
+
"""
|
40 |
try:
|
41 |
+
# Load the audio file
|
42 |
+
y, sr = librosa.load(audio_path, sr=None)
|
43 |
+
|
44 |
+
# Extract Mel Spectrogram
|
45 |
+
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
|
46 |
+
db_spec = librosa.power_to_db(S, ref=np.max)
|
47 |
+
|
48 |
+
# Calculate average amplitude and frequency
|
49 |
+
avg_amplitude = np.mean(db_spec)
|
50 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)
|
51 |
+
avg_frequency = np.mean(spectral_centroids)
|
52 |
+
|
53 |
+
# Generate description based on amplitude
|
54 |
+
if avg_amplitude < -40:
|
55 |
+
amplitude_desc = "a calm and serene landscape with gentle waves"
|
56 |
+
elif avg_amplitude < -20:
|
57 |
+
amplitude_desc = "a vibrant forest with rustling leaves"
|
58 |
+
else:
|
59 |
+
amplitude_desc = "a thunderstorm with dark clouds and lightning"
|
60 |
+
|
61 |
+
# Generate description based on frequency
|
62 |
+
if avg_frequency < 2000:
|
63 |
+
frequency_desc = "under soft, ambient light"
|
64 |
+
elif avg_frequency < 4000:
|
65 |
+
frequency_desc = "with vivid and lively colors"
|
66 |
else:
|
67 |
+
frequency_desc = "in a surreal and dynamic setting"
|
68 |
+
|
69 |
+
# Combine descriptions
|
70 |
+
description = f"{amplitude_desc} {frequency_desc}"
|
71 |
+
return description
|
72 |
except Exception as e:
|
73 |
+
print(f"Error processing audio: {e}")
|
74 |
+
return "an abstract artistic scene"
|
75 |
+
|
76 |
+
def generate_image(description):
|
77 |
+
"""
|
78 |
+
Generate an image using the Stable Diffusion model based on the description.
|
79 |
+
|
80 |
+
Parameters:
|
81 |
+
description (str): Textual description for image generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
Returns:
|
84 |
+
PIL.Image: Generated image.
|
85 |
+
"""
|
86 |
try:
|
87 |
+
if device == "cuda":
|
88 |
+
with torch.autocast("cuda"):
|
89 |
+
image = stable_diffusion(description).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
+
image = stable_diffusion(description).images[0]
|
92 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
except Exception as e:
|
94 |
+
print(f"Error generating image: {e}")
|
95 |
+
return None
|
96 |
+
|
97 |
+
def audio_to_image(audio_file):
|
98 |
+
"""
|
99 |
+
Convert an audio file to an artistic image.
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
audio_file (str): Path to the uploaded audio file.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
PIL.Image or str: Generated image or error message.
|
106 |
+
"""
|
107 |
+
if audio_file is None:
|
108 |
+
return "No audio file provided."
|
109 |
+
|
110 |
+
description = describe_audio(audio_file)
|
111 |
+
print(f"Generated Description: {description}")
|
112 |
+
|
113 |
+
image = generate_image(description)
|
114 |
+
if image is not None:
|
115 |
+
return image
|
116 |
+
else:
|
117 |
+
return "Failed to generate image."
|
118 |
+
|
119 |
+
# Gradio Interface
|
120 |
+
title = "🎵 Audio to Artistic Image Converter 🎨"
|
121 |
+
description_text = """
|
122 |
+
Upload an audio file, and this app will generate an artistic image based on the sound's characteristics.
|
123 |
+
"""
|
124 |
+
|
125 |
+
# Define example paths
|
126 |
+
example_paths = [
|
127 |
+
"example_audio/calm_ocean.wav",
|
128 |
+
"example_audio/rustling_leaves.wav",
|
129 |
+
"example_audio/thunderstorm.wav",
|
130 |
+
]
|
131 |
+
|
132 |
+
# Verify example files exist
|
133 |
+
valid_examples = []
|
134 |
+
for path in example_paths:
|
135 |
+
if os.path.isfile(path):
|
136 |
+
valid_examples.append([path])
|
137 |
+
else:
|
138 |
+
print(f"Example file not found: {path}")
|
139 |
+
|
140 |
+
if not os.path.exists("example_audio"):
|
141 |
+
os.makedirs("example_audio")
|
142 |
+
print("Please add some example audio files in the 'example_audio' directory.")
|
143 |
+
|
144 |
+
interface = gr.Interface(
|
145 |
+
fn=audio_to_image,
|
146 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
147 |
+
outputs=gr.Image(type="pil"),
|
148 |
+
title=title,
|
149 |
+
description=description_text,
|
150 |
+
examples=valid_examples if valid_examples else None,
|
151 |
+
allow_flagging="never",
|
152 |
+
theme="default"
|
153 |
)
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
+
interface.launch()
|
requirements.txt
CHANGED
@@ -1,3 +1,10 @@
|
|
1 |
-
gradio==4.44.1
|
2 |
yt-dlp==2023.10.7
|
3 |
requests==2.32.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
yt-dlp==2023.10.7
|
2 |
requests==2.32.3
|
3 |
+
accelerate
|
4 |
+
gradio>=4.44.1
|
5 |
+
librosa
|
6 |
+
numpy
|
7 |
+
torch
|
8 |
+
diffusers
|
9 |
+
accelerate
|
10 |
+
psutil
|