import os import tensorflow as tf # Load compressed models from tensorflow_hub os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import IPython.display as display import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['figure.figsize'] = (12, 12) mpl.rcParams['axes.grid'] = False import numpy as np import PIL.Image def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) def load_img(path_to_img): max_dim = 1024 img = tf.io.read_file(path_to_img) img = tf.image.decode_image(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, :] return img def imshow(image, title=None): if len(image.shape) > 3: image = tf.squeeze(image, axis=0) plt.imshow(image) if title: plt.title(title) content_layers = ['block5_conv2'] style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] num_content_layers = len(content_layers) num_style_layers = len(style_layers) def vgg_layers(layer_names): """ Creates a vgg model that returns a list of intermediate output values.""" # Load our model. Load pretrained VGG, trained on imagenet data vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet') vgg.trainable = False outputs = [vgg.get_layer(name).output for name in layer_names] model = tf.keras.Model([vgg.input], outputs) return model def gram_matrix(input_tensor): result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor) input_shape = tf.shape(input_tensor) num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32) return result/(num_locations) class StyleContentModel(tf.keras.models.Model): def __init__(self, style_layers, content_layers): super(StyleContentModel, self).__init__() self.vgg = vgg_layers(style_layers + content_layers) self.style_layers = style_layers self.content_layers = content_layers self.num_style_layers = len(style_layers) self.vgg.trainable = False def call(self, inputs): "Expects float input in [0,1]" inputs = inputs*255.0 preprocessed_input = tf.keras.applications.vgg19.preprocess_input(inputs) outputs = self.vgg(preprocessed_input) style_outputs, content_outputs = (outputs[:self.num_style_layers], outputs[self.num_style_layers:]) style_outputs = [gram_matrix(style_output) for style_output in style_outputs] content_dict = {content_name: value for content_name, value in zip(self.content_layers, content_outputs)} style_dict = {style_name: value for style_name, value in zip(self.style_layers, style_outputs)} return {'content': content_dict, 'style': style_dict} extractor = StyleContentModel(style_layers, content_layers) def clip_0_1(image): return tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0) def high_pass_x_y(image): x_var = image[:, :, 1:, :] - image[:, :, :-1, :] y_var = image[:, 1:, :, :] - image[:, :-1, :, :] return x_var, y_var def total_variation_loss(image): x_deltas, y_deltas = high_pass_x_y(image) return tf.reduce_sum(tf.abs(x_deltas)) + tf.reduce_sum(tf.abs(y_deltas)) opt = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1) style_weight=1e-2 content_weight=1e4 total_variation_weight=30 epochs = 10 steps_per_epoch = 50 def transfer_style(content_path,style_path,transfer_mode,steps_per_epoch=100,style_weight=1e-2,content_weight=1e4,total_variation_weight=30): try: content_image = load_img(content_path) style_image = load_img(style_path) if transfer_mode == "Fast_transfer": res = transfer_style_fast(content_image,style_image) else: res = transfer_style_custom(content_image,style_image,int(steps_per_epoch),style_weight,content_weight,total_variation_weight) res = tensor_to_image(res) except Exception as ex: raise Exception(ex) return res def transfer_style_fast(content_image,style_image): import tensorflow_hub as hub hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') return hub_model(tf.constant(content_image), tf.constant(style_image))[0] def transfer_style_custom(content_image,style_image,steps_per_epoch=100,style_weight=1e-2,content_weight=1e4,total_variation_weight=30): def style_content_loss(outputs): style_outputs = outputs['style'] content_outputs = outputs['content'] style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-style_targets[name])**2) for name in style_outputs.keys()]) style_loss *= style_weight / num_style_layers content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-content_targets[name])**2) for name in content_outputs.keys()]) content_loss *= content_weight / num_content_layers loss = style_loss + content_loss return loss @tf.function() def train_step(image): with tf.GradientTape() as tape: outputs = extractor(image) loss = style_content_loss(outputs) loss += total_variation_weight*tf.image.total_variation(image) grad = tape.gradient(loss, image) opt.apply_gradients([(grad, image)]) image.assign(clip_0_1(image)) try: style_targets = extractor(style_image)['style'] content_targets = extractor(content_image)['content'] image = tf.Variable(content_image) step = 0 for n in range(epochs): for m in range(steps_per_epoch): step += 1 train_step(image) except Exception as ex: raise Exception(ex) return image import gradio as gr inputs = [ gr.inputs.Image(type="filepath"), gr.inputs.Image(type="filepath"), gr.inputs.Radio(["Fast_transfer","Custom_transfer"]), gr.inputs.Slider(1,100,default=30,step=1), gr.inputs.Number(1e-2), gr.inputs.Number(1e4), gr.inputs.Number(30) ] iface = gr.Interface( fn=transfer_style, inputs=inputs, examples=[["NST/etsii.jpg","NST/data/style_2.jpg","Fast_transfer",30,1e-2,1e4,30], ["NST/data/content_9.jpg","NST/ola.png","Fast_transfer",30,1e-2,1e4,30], ["NST/sailboat_cropped.jpg","NST/sketch_cropped.png","Fast_transfer",30,1e-2,1e4,30], ["NST/armadillo.jpg","NST/data/style_3.jpg","Fast_transfer",30,1e-2,1e4,30], ["NST/gato.jpg","NST/data/style_4.jpg","Fast_transfer",30,1e-2,1e4,30], ], outputs="image").launch(debug=True)