import gradio as gr import fasttext from huggingface_hub import hf_hub_download from huggingface_hub import login import os login(token=os.environ["HF_TOKEN"]) model_path = hf_hub_download(repo_id="LuminAISecurity/fasttext-english-nearest-neighbors-demo", filename="model.bin") model = fasttext.load_model(model_path) def get_nearest_neighbors(word, model, k=5): neighbors = model.get_nearest_neighbors(word, k=k) return neighbors # Define the K-nearest neighbors function def find_nearest_neighbors(text, k): neighbors = model.get_nearest_neighbors(text, k=k+3) return neighbors[2:] # Create the Gradio interface iface = gr.Interface( fn=find_nearest_neighbors, inputs=[ gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"), gr.Slider(1, 10, value=5, label="Number of Neighbors") ], outputs=gr.JSON(label="Nearest Neighbors"), title="FastText K-Nearest Neighbors Finder", description="Enter a text and the number of neighbors to find the closest matches using the FastText model.", examples=[["king", 5], ["queen", 3]], theme="default", css="style.css" ) # Launch the app if __name__ == "__main__": iface.launch(share=True)