Zhu-FaceOnLive's picture
Upload 72 files
81efcf0
// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_extended_async_copies : enable
// Set to 1 only if output is zerroed before kernel execution
#define USE_ATOMICS 0
__attribute__((reqd_work_group_size(1, 1, 1))) __kernel void mvn_scale(
const __global half *restrict src,
__global float *restrict mean_part,
__global float *restrict power_mean,
__global half *restrict dst,
int W,
int H1,
int across_channels,
int normalize_variance,
int nparts)
{
__local half src_line[4 * 1024];
__local half dst_line[4 * 1024];
int c = get_group_id(2);
int C = get_global_size(2);
int h = get_group_id(1);
int H = get_global_size(1);
event_t e1 = async_work_group_copy(src_line, src + c * H * W + h * W, W, 0);
wait_group_events(1, &e1);
int idx = (across_channels == 0) ? nparts * c : 0;
float scale = (across_channels == 0) ? H * W : H * W * C;
#if USE_ATOMICS
float mean = mean_part[idx];
float variance = power_mean[idx];
#else
int total = (across_channels == 0) ? nparts : nparts * C;
float mean = 0.f;
float variance = 0.f;
for (int i = 0; i < total; i++) {
mean += mean_part[idx + i];
variance += power_mean[idx + i];
}
#endif
mean = mean / scale;
variance = variance / scale;
variance = variance - mean * mean;
variance = native_sqrt(variance) + 1e-9f;
half hmean = mean;
half hvariance = (normalize_variance == 0) ? 1.f : (1.f / variance);
for (size_t w = 0; w < W; w++) {
dst_line[w] = (src_line[w] - hmean) * hvariance;
}
barrier(CLK_LOCAL_MEM_FENCE);
event_t e2 = async_work_group_copy(dst + c * H * W + h * W, dst_line, W, 0);
wait_group_events(1, &e2);
}