Spaces:
Runtime error
Runtime error
from sklearn import preprocessing | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.metrics import accuracy_score | |
from sklearn.model_selection import GridSearchCV, KFold, StratifiedKFold | |
from sklearn.model_selection import cross_val_score | |
from sklearn.svm import SVC, LinearSVC | |
from torch.nn import Sequential, Linear, ReLU | |
from torch_geometric.data import DataLoader | |
from torch_geometric.datasets import TUDataset | |
from torch_geometric.nn import GINConv, global_add_pool | |
from tqdm import tqdm | |
import numpy as np | |
import os.path as osp | |
import sys | |
import torch | |
import torch.nn.functional as F | |
class Encoder(torch.nn.Module): | |
def __init__(self, num_features, dim, num_gc_layers): | |
super(Encoder, self).__init__() | |
# num_features = dataset.num_features | |
# dim = 32 | |
self.num_gc_layers = num_gc_layers | |
# self.nns = [] | |
self.convs = torch.nn.ModuleList() | |
self.bns = torch.nn.ModuleList() | |
for i in range(num_gc_layers): | |
if i: | |
nn = Sequential(Linear(dim, dim), ReLU(), Linear(dim, dim)) | |
else: | |
nn = Sequential(Linear(num_features, dim), ReLU(), Linear(dim, dim)) | |
conv = GINConv(nn) | |
bn = torch.nn.BatchNorm1d(dim) | |
self.convs.append(conv) | |
self.bns.append(bn) | |
def forward(self, x, edge_index, batch): | |
if x is None: | |
x = torch.ones((batch.shape[0], 1)).to(device) | |
xs = [] | |
for i in range(self.num_gc_layers): | |
x = F.relu(self.convs[i](x, edge_index)) | |
x = self.bns[i](x) | |
xs.append(x) | |
# if i == 2: | |
# feature_map = x2 | |
xpool = [global_add_pool(x, batch) for x in xs] | |
x = torch.cat(xpool, 1) | |
return x, torch.cat(xs, 1) | |
def get_embeddings(self, loader): | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
ret = [] | |
y = [] | |
with torch.no_grad(): | |
for data in loader: | |
data.to(device) | |
x, edge_index, batch = data.x, data.edge_index, data.batch | |
if x is None: | |
x = torch.ones((batch.shape[0],1)).to(device) | |
x, _ = self.forward(x, edge_index, batch) | |
ret.append(x.cpu().numpy()) | |
# y.append(data.aid) | |
ret = np.concatenate(ret, 0) | |
# y = np.concatenate(y, 0) | |
return ret | |
# return ret, y | |
class Net(torch.nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
try: | |
num_features = dataset.num_features | |
except: | |
num_features = 1 | |
dim = 32 | |
self.encoder = Encoder(num_features, dim) | |
self.fc1 = Linear(dim*5, dim) | |
self.fc2 = Linear(dim, dataset.num_classes) | |
def forward(self, x, edge_index, batch): | |
if x is None: | |
x = torch.ones(batch.shape[0]).to(device) | |
x, _ = self.encoder(x, edge_index, batch) | |
x = F.relu(self.fc1(x)) | |
x = F.dropout(x, p=0.5, training=self.training) | |
x = self.fc2(x) | |
return F.log_softmax(x, dim=-1) | |
def train(epoch): | |
model.train() | |
if epoch == 51: | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = 0.5 * param_group['lr'] | |
loss_all = 0 | |
for data in train_loader: | |
data = data.to(device) | |
optimizer.zero_grad() | |
# print(data.x.shape) | |
# [ num_nodes x num_node_labels ] | |
# print(data.edge_index.shape) | |
# [2 x num_edges ] | |
# print(data.batch.shape) | |
# [ num_nodes ] | |
output = model(data.x, data.edge_index, data.batch) | |
loss = F.nll_loss(output, data.y) | |
loss.backward() | |
loss_all += loss.item() * data.num_graphs | |
optimizer.step() | |
return loss_all / len(train_dataset) | |
def test(loader): | |
model.eval() | |
correct = 0 | |
for data in loader: | |
data = data.to(device) | |
output = model(data.x, data.edge_index, data.batch) | |
pred = output.max(dim=1)[1] | |
correct += pred.eq(data.y).sum().item() | |
return correct / len(loader.dataset) | |
if __name__ == '__main__': | |
for percentage in [ 1.]: | |
for DS in [sys.argv[1]]: | |
if 'REDDIT' in DS: | |
epochs = 200 | |
else: | |
epochs = 100 | |
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', DS) | |
accuracies = [[] for i in range(epochs)] | |
#kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=None) | |
dataset = TUDataset(path, name=DS) #.shuffle() | |
num_graphs = len(dataset) | |
print('Number of graphs', len(dataset)) | |
dataset = dataset[:int(num_graphs * percentage)] | |
dataset = dataset.shuffle() | |
kf = KFold(n_splits=10, shuffle=True, random_state=None) | |
for train_index, test_index in kf.split(dataset): | |
# x_train, x_test = x[train_index], x[test_index] | |
# y_train, y_test = y[train_index], y[test_index] | |
train_dataset = [dataset[int(i)] for i in list(train_index)] | |
test_dataset = [dataset[int(i)] for i in list(test_index)] | |
print('len(train_dataset)', len(train_dataset)) | |
print('len(test_dataset)', len(test_dataset)) | |
train_loader = DataLoader(train_dataset, batch_size=128) | |
test_loader = DataLoader(test_dataset, batch_size=128) | |
# print('train', len(train_loader)) | |
# print('test', len(test_loader)) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = Net().to(device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |
for epoch in range(1, epochs+1): | |
train_loss = train(epoch) | |
train_acc = test(train_loader) | |
test_acc = test(test_loader) | |
accuracies[epoch-1].append(test_acc) | |
tqdm.write('Epoch: {:03d}, Train Loss: {:.7f}, ' | |
'Train Acc: {:.7f}, Test Acc: {:.7f}'.format(epoch, train_loss, | |
train_acc, test_acc)) | |
tmp = np.mean(accuracies, axis=1) | |
print(percentage, DS, np.argmax(tmp), np.max(tmp), np.std(accuracies[np.argmax(tmp)])) | |
input() | |