Spaces:
No application file
No application file
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from diffusers.utils import load_image | |
import numpy as np | |
import torch | |
import cv2 | |
from PIL import Image | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
device | |
# load control net and stable diffusion v1-5 | |
base_model_path = "runwayml/stable-diffusion-v1-5" | |
controlnet_path = "LuyangZ/controlnet_Neufert4_64_100" | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=True) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_model_path, controlnet=controlnet, use_safetensors=True) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to(device) | |
# pipe.set_progress_bar_config(disable=True) | |
# generate image | |
control_image = load_image("C:/Users/luyan/diffusers/examples/controlnet/Test/1030_4465_8e4734b920a2be9f0e7d85b734b7fa7e.png") | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# generate image | |
control_image = load_image("C:/Users/luyan/diffusers/examples/controlnet/Test/2179_9871_432b1fbf16d04cd8371cd9ece543cb28.png") | |
# pipe = pipe.to(device) | |
# generator = torch.manual_seed(0) | |
# generator = torch.Generator(device=device).manual_seed(999) | |
# generator = None | |
# images = [] | |
# for i in range(5): | |
# image = pipe( | |
# "floor plan,2 bedrooms", num_inference_steps=100, image=control_image | |
# ).images[0] | |
# images.append(image) | |
generator = torch.Generator(device=device).manual_seed(333) | |
images = [] | |
for i in range(5): | |
image = pipe( | |
"floor plan,2 bedrooms", num_inference_steps=20, generator=generator, image=control_image | |
).images[0] | |
images.append(image) | |
def make_grid(images, size=512): | |
"""Given a list of PIL images, stack them together into a line for easy viewing""" | |
output_im = Image.new("RGB", (size * len(images), size)) | |
for i, im in enumerate(images): | |
output_im.paste(im.resize((size, size)), (i * size, 0)) | |
return output_im | |
make_grid(images, size=512) |