from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers.utils import load_image import numpy as np import torch import cv2 from PIL import Image device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device # load control net and stable diffusion v1-5 base_model_path = "runwayml/stable-diffusion-v1-5" controlnet_path = "LuyangZ/controlnet_Neufert4_64_100" controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=True) pipe = StableDiffusionControlNetPipeline.from_pretrained( base_model_path, controlnet=controlnet, use_safetensors=True) # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) # pipe.set_progress_bar_config(disable=True) # generate image control_image = load_image("C:/Users/luyan/diffusers/examples/controlnet/Test/1030_4465_8e4734b920a2be9f0e7d85b734b7fa7e.png") # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # generate image control_image = load_image("C:/Users/luyan/diffusers/examples/controlnet/Test/2179_9871_432b1fbf16d04cd8371cd9ece543cb28.png") # pipe = pipe.to(device) # generator = torch.manual_seed(0) # generator = torch.Generator(device=device).manual_seed(999) # generator = None # images = [] # for i in range(5): # image = pipe( # "floor plan,2 bedrooms", num_inference_steps=100, image=control_image # ).images[0] # images.append(image) generator = torch.Generator(device=device).manual_seed(333) images = [] for i in range(5): image = pipe( "floor plan,2 bedrooms", num_inference_steps=20, generator=generator, image=control_image ).images[0] images.append(image) def make_grid(images, size=512): """Given a list of PIL images, stack them together into a line for easy viewing""" output_im = Image.new("RGB", (size * len(images), size)) for i, im in enumerate(images): output_im.paste(im.resize((size, size)), (i * size, 0)) return output_im make_grid(images, size=512)