|
import os
|
|
import glob
|
|
import sys
|
|
import argparse
|
|
import logging
|
|
import json
|
|
import subprocess
|
|
import numpy as np
|
|
from scipy.io.wavfile import read
|
|
import torch
|
|
import regex as re
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
|
logger = logging
|
|
|
|
|
|
|
|
zh_pattern = re.compile(r'[\u4e00-\u9fa5]')
|
|
en_pattern = re.compile(r'[a-zA-Z]')
|
|
jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]')
|
|
kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]')
|
|
num_pattern=re.compile(r'[0-9]')
|
|
comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])"
|
|
tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'}
|
|
|
|
def tag_cjke(text):
|
|
'''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况'''
|
|
sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text)
|
|
sentences.append("")
|
|
sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])]
|
|
|
|
prev_lang=None
|
|
tagged_text = ""
|
|
for s in sentences:
|
|
|
|
nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip()
|
|
if len(nu)==0:
|
|
continue
|
|
s = re.sub(r'[()()《》「」【】‘“”’]+', '', s)
|
|
jp=re.findall(jp_pattern, s)
|
|
|
|
if len(jp)>0:
|
|
prev_lang,tagged_jke=tag_jke(s,prev_lang)
|
|
tagged_text +=tagged_jke
|
|
else:
|
|
prev_lang,tagged_cke=tag_cke(s,prev_lang)
|
|
tagged_text +=tagged_cke
|
|
return tagged_text
|
|
|
|
def tag_jke(text,prev_sentence=None):
|
|
'''为英日韩加tag'''
|
|
|
|
tagged_text = ""
|
|
prev_lang = None
|
|
tagged=0
|
|
|
|
for char in text:
|
|
|
|
if jp_pattern.match(char):
|
|
lang = "JP"
|
|
elif zh_pattern.match(char):
|
|
lang = "JP"
|
|
elif kr_pattern.match(char):
|
|
lang = "KR"
|
|
elif en_pattern.match(char):
|
|
lang = "EN"
|
|
|
|
|
|
else:
|
|
lang = None
|
|
tagged_text += char
|
|
continue
|
|
|
|
if lang != prev_lang:
|
|
tagged=1
|
|
if prev_lang==None:
|
|
tagged_text =tags[lang]+tagged_text
|
|
else:
|
|
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
|
|
|
|
|
|
prev_lang = lang
|
|
|
|
|
|
tagged_text += char
|
|
|
|
|
|
if prev_lang:
|
|
tagged_text += tags[prev_lang]
|
|
if not tagged:
|
|
prev_lang=prev_sentence
|
|
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
|
|
|
|
return prev_lang,tagged_text
|
|
|
|
def tag_cke(text,prev_sentence=None):
|
|
'''为中英韩加tag'''
|
|
|
|
tagged_text = ""
|
|
prev_lang = None
|
|
|
|
tagged=0
|
|
|
|
|
|
for char in text:
|
|
|
|
if zh_pattern.match(char):
|
|
lang = "ZH"
|
|
elif kr_pattern.match(char):
|
|
lang = "KR"
|
|
elif en_pattern.match(char):
|
|
lang = "EN"
|
|
|
|
|
|
else:
|
|
|
|
lang = None
|
|
tagged_text += char
|
|
continue
|
|
|
|
|
|
if lang != prev_lang:
|
|
tagged=1
|
|
if prev_lang==None:
|
|
tagged_text =tags[lang]+tagged_text
|
|
else:
|
|
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
|
|
|
|
|
|
prev_lang = lang
|
|
|
|
|
|
tagged_text += char
|
|
|
|
|
|
if prev_lang:
|
|
tagged_text += tags[prev_lang]
|
|
|
|
if tagged==0:
|
|
prev_lang=prev_sentence
|
|
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
|
|
return prev_lang,tagged_text
|
|
|
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False):
|
|
assert os.path.isfile(checkpoint_path)
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
|
iteration = checkpoint_dict['iteration']
|
|
learning_rate = checkpoint_dict['learning_rate']
|
|
if optimizer is not None:
|
|
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
|
saved_state_dict = checkpoint_dict['model']
|
|
if hasattr(model, 'module'):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
new_state_dict = {}
|
|
for k, v in state_dict.items():
|
|
try:
|
|
if k == 'emb_g.weight':
|
|
if drop_speaker_emb:
|
|
new_state_dict[k] = v
|
|
continue
|
|
v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k]
|
|
new_state_dict[k] = v
|
|
else:
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
except:
|
|
logger.info("%s is not in the checkpoint" % k)
|
|
new_state_dict[k] = v
|
|
if hasattr(model, 'module'):
|
|
model.module.load_state_dict(new_state_dict)
|
|
else:
|
|
model.load_state_dict(new_state_dict)
|
|
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
|
checkpoint_path, iteration))
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
|
iteration, checkpoint_path))
|
|
if hasattr(model, 'module'):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
torch.save({'model': state_dict,
|
|
'iteration': iteration,
|
|
'optimizer': optimizer.state_dict() if optimizer is not None else None,
|
|
'learning_rate': learning_rate}, checkpoint_path)
|
|
|
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
|
for k, v in scalars.items():
|
|
writer.add_scalar(k, v, global_step)
|
|
for k, v in histograms.items():
|
|
writer.add_histogram(k, v, global_step)
|
|
for k, v in images.items():
|
|
writer.add_image(k, v, global_step, dataformats='HWC')
|
|
for k, v in audios.items():
|
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
|
|
|
|
def extract_digits(f):
|
|
digits = "".join(filter(str.isdigit, f))
|
|
return int(digits) if digits else -1
|
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_[0-9]*.pth"):
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
f_list.sort(key=lambda f: extract_digits(f))
|
|
x = f_list[-1]
|
|
print(f"latest_checkpoint_path:{x}")
|
|
return x
|
|
|
|
|
|
def oldest_checkpoint_path(dir_path, regex="G_[0-9]*.pth", preserved=4):
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
f_list.sort(key=lambda f: extract_digits(f))
|
|
if len(f_list) > preserved:
|
|
x = f_list[0]
|
|
print(f"oldest_checkpoint_path:{x}")
|
|
return x
|
|
return ""
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
|
interpolation='none')
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
|
interpolation='none')
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = 'Decoder timestep'
|
|
if info is not None:
|
|
xlabel += '\n\n' + info
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel('Encoder timestep')
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding='utf-8') as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
return filepaths_and_text
|
|
|
|
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
|
return True
|
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
|
return False
|
|
else:
|
|
raise argparse.ArgumentTypeError('Boolean value expected.')
|
|
|
|
|
|
def get_hparams(init=True):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json",
|
|
help='JSON file for configuration')
|
|
parser.add_argument('-m', '--model', type=str, default="pretrained_models",
|
|
help='Model name')
|
|
parser.add_argument('-n', '--max_epochs', type=int, default=50,
|
|
help='finetune epochs')
|
|
parser.add_argument('--cont', type=str2bool, default=False, help='whether to continue training on the latest checkpoint')
|
|
parser.add_argument('--drop_speaker_embed', type=str2bool, default=False, help='whether to drop existing characters')
|
|
parser.add_argument('--train_with_pretrained_model', type=str2bool, default=True,
|
|
help='whether to train with pretrained model')
|
|
parser.add_argument('--preserved', type=int, default=4,
|
|
help='Number of preserved models')
|
|
|
|
args = parser.parse_args()
|
|
model_dir = os.path.join("./", args.model)
|
|
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
|
|
config_path = args.config
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
if init:
|
|
with open(config_path, "r") as f:
|
|
data = f.read()
|
|
with open(config_save_path, "w") as f:
|
|
f.write(data)
|
|
else:
|
|
with open(config_save_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
hparams.max_epochs = args.max_epochs
|
|
hparams.cont = args.cont
|
|
hparams.drop_speaker_embed = args.drop_speaker_embed
|
|
hparams.train_with_pretrained_model = args.train_with_pretrained_model
|
|
hparams.preserved = args.preserved
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_dir(model_dir):
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
with open(config_save_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
|
with open(config_path, "r", encoding="utf-8") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
return hparams
|
|
|
|
|
|
def check_git_hash(model_dir):
|
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
source_dir
|
|
))
|
|
return
|
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
|
|
path = os.path.join(model_dir, "githash")
|
|
if os.path.exists(path):
|
|
saved_hash = open(path).read()
|
|
if saved_hash != cur_hash:
|
|
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
|
saved_hash[:8], cur_hash[:8]))
|
|
else:
|
|
open(path, "w").write(cur_hash)
|
|
|
|
|
|
def get_logger(model_dir, filename="train.log"):
|
|
global logger
|
|
logger = logging.getLogger(os.path.basename(model_dir))
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
h.setLevel(logging.DEBUG)
|
|
h.setFormatter(formatter)
|
|
logger.addHandler(h)
|
|
return logger
|
|
|
|
|
|
class HParams():
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = HParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__() |