File size: 5,943 Bytes
7342b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pdb
import time

import streamlit as st
import os
from utils import wm_add_v2, file_reader, model_util, wm_decode_v2, bin_util
from models import my_model_v7_recover
import torch
import uuid
import datetime
import numpy as np
import soundfile
from huggingface_hub import hf_hub_download, HfApi


# Function to add watermark to audio
def add_watermark(audio_path, watermark_text):
    assert len(watermark_text) == 5

    start_bit, msg_bit, watermark = wm_add_v2.create_parcel_message(len_start_bit, 32, watermark_text)

    data, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, 16000)

    _, signal_wmd, time_cost = wm_add_v2.add_watermark(watermark, data, 16000, 0.1, device, model)

    tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + str(uuid.uuid4()) + ".wav"
    tmp_file_path = '/tmp/' + tmp_file_name
    soundfile.write(tmp_file_path, signal_wmd, sr)
    return tmp_file_path


# Function to decode watermark from audio
def decode_watermark(audio_path):
    data, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, 16000)
    data = data[0:5 * sr]
    start_bit = wm_add_v2.fix_pattern[0:len_start_bit]
    support_count, mean_result, results = wm_decode_v2.extract_watermark_v2(
        data,
        start_bit,
        0.1,
        16000,
        0.3,
        model,
        device, "best")

    if mean_result is None:
        return "No Watermark"

    payload = mean_result[len_start_bit:]
    return bin_util.binArray2HexStr(payload)


# Main web app
def main():
    max_upload_size = 20 * 1024 * 1024  # 20 MB in bytes

    if "def_value" not in st.session_state:
        st.session_state.def_value = bin_util.binArray2HexStr(np.random.choice([0, 1], size=32 - len_start_bit))

    st.title("Neural Audio Watermark")
    st.write("Choose the action you want to perform:")

    action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])

    if action == "Add Watermark":
        audio_file = st.file_uploader("Upload Audio File (WAV)", type=["wav"], accept_multiple_files=False,
                                      max_upload_size=max_upload_size)
        if audio_file:
            tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
            with open(tmp_input_audio_file, "wb") as f:
                f.write(audio_file.getbuffer())
            st.audio(tmp_input_audio_file, format="audio/wav")

            watermark_text = st.text_input("Enter Watermark Text (5 English letters)", value=st.session_state.def_value)

            add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
            if add_watermark_button:  # 点击按钮后执行的
                if audio_file and watermark_text:
                    with st.spinner("Adding Watermark..."):
                        # add_watermark_button.empty()
                        # st.button("Add Watermark", disabled=True)
                        # st.button("Add Watermark", disabled=True, key="add_watermark_btn_disabled")
                        t1 = time.time()

                        watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text)
                        encode_time_cost = time.time() - t1

                        st.write("Watermarked Audio:")
                        st.audio(watermarked_audio, format="audio/wav")
                        st.write("Time Cost:%d seconds" % encode_time_cost)

                        # st.button("Add Watermark", disabled=False)

    elif action == "Decode Watermark":
        audio_file = st.file_uploader("Upload Audio File (WAV/MP3)", type=["wav", "mp3"], accept_multiple_files=False,
                                      max_upload_size=max_upload_size)
        if audio_file:
            if st.button("Decode Watermark"):
                # 1.保存
                tmp_file_for_decode_path = os.path.join("/tmp/", audio_file.name)
                with open(tmp_file_for_decode_path, "wb") as f:
                    f.write(audio_file.getbuffer())

                # 2.执行
                with st.spinner("Decoding..."):
                    t1 = time.time()
                    decoded_watermark = decode_watermark(tmp_file_for_decode_path)
                    decode_cost = time.time() - t1

                print("decoded_watermark", decoded_watermark)
                # Display the decoded watermark
                st.write("Decoded Watermark:", decoded_watermark)
                st.write("Time Cost:%d seconds" % (decode_cost))


def load_model(resume_path):
    n_fft = 1000
    hop_length = 400
    # https://huggingface.co/M4869/InvertibleWM/blob/main/step59000_snr39.99_pesq4.35_BERP_none0.30_mean1.81_std1.81.pkl
    # api_key = st.secrets["api_key"]
    # print(api_key, api_key)
    api_key = "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"
    model_ckpt_path = hf_hub_download(repo_id="M4869/InvertibleWM",
                                      filename="step59000_snr39.99_pesq4.35_BERP_none0.30_mean1.81_std1.81.pkl",
                                      token=api_key
                                      )
    # print("model_ckpt_path", model_ckpt_path)
    resume_path = model_ckpt_path
    # return

    model = my_model_v7_recover.Model(16000, 32, n_fft, hop_length,
                                      use_recover_layer=False, num_layers=8).to(device)
    checkpoint = torch.load(resume_path, map_location=torch.device('cpu'))
    state_dict = model_util.map_state_dict(checkpoint['model'])
    model.load_state_dict(state_dict, strict=True)
    model.eval()
    return model


if __name__ == "__main__":
    len_start_bit = 12

    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

    model = load_model("./data/step59000_snr39.99_pesq4.35_BERP_none0.30_mean1.81_std1.81.pkl")

    main()
    # decode_watermark("/Users/my/Downloads/7a95b353a46893903e9f946c24170b210ce14e8c52c63bb2ab3d144e.wav")