Spaces:
M4xjunior
/
Running on Zero

M4xjunior commited on
Commit
d986efa
·
verified ·
1 Parent(s): d06e453

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +316 -762
app.py CHANGED
@@ -1,146 +1,66 @@
1
- # ruff: noqa: E402
2
- # Above allows ruff to ignore E402: module level import not at top of file
3
-
4
  import re
5
  import tempfile
6
  from collections import OrderedDict
7
- from importlib.resources import files
8
-
9
  import click
10
  import gradio as gr
11
  import numpy as np
12
  import soundfile as sf
13
  import torchaudio
14
  from cached_path import cached_path
15
- from transformers import AutoModelForCausalLM, AutoTokenizer
16
-
 
 
 
 
 
 
 
 
17
  try:
18
  import spaces
19
-
20
  USING_SPACES = True
21
  except ImportError:
22
  USING_SPACES = False
23
 
24
 
 
 
 
25
  def gpu_decorator(func):
26
  if USING_SPACES:
27
  return spaces.GPU(func)
28
  else:
29
  return func
30
 
31
-
32
- from f5_tts.model import DiT, UNetT
33
- from f5_tts.infer.utils_infer import (
34
- load_vocoder,
35
- load_model,
36
- preprocess_ref_audio_text,
37
- infer_process,
38
- remove_silence_for_generated_wav,
39
- save_spectrogram,
40
- )
41
-
42
-
43
- DEFAULT_TTS_MODEL = "F5-TTS"
44
- tts_model_choice = DEFAULT_TTS_MODEL
45
-
46
-
47
- # load models
48
-
49
  vocoder = load_vocoder()
50
 
51
-
52
  import os
53
  from huggingface_hub import hf_hub_download
54
-
55
  def load_f5tts():
56
  # Carrega o caminho do repositório e o nome do arquivo das variáveis de ambiente
57
  repo_id = os.getenv("MODEL_REPO_ID", "SWivid/F5-TTS/F5TTS_Base")
58
  filename = os.getenv("MODEL_FILENAME", "model_1200000.safetensors")
59
  token = os.getenv("HUGGINGFACE_TOKEN")
60
-
61
  # Valida se o token está presente
62
  if not token:
63
  raise ValueError("A variável de ambiente 'HUGGINGFACE_TOKEN' não foi definida.")
64
-
65
  # Faz o download do modelo do repositório privado
66
  ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename, use_auth_token=token)
67
 
68
  F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
69
  return load_model(DiT, F5TTS_model_cfg, ckpt_path)
70
 
71
-
72
-
73
-
74
- def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
75
- E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
76
- return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
77
-
78
-
79
- def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
80
- ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
81
- if ckpt_path.startswith("hf://"):
82
- ckpt_path = str(cached_path(ckpt_path))
83
- if vocab_path.startswith("hf://"):
84
- vocab_path = str(cached_path(vocab_path))
85
- if model_cfg is None:
86
- model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
87
- return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
88
-
89
-
90
  F5TTS_ema_model = load_f5tts()
91
- E2TTS_ema_model = load_e2tts() if USING_SPACES else None
92
- custom_ema_model, pre_custom_path = None, ""
93
-
94
- chat_model_state = None
95
- chat_tokenizer_state = None
96
-
97
-
98
- @gpu_decorator
99
- def generate_response(messages, model, tokenizer):
100
- """Generate response using Qwen"""
101
- text = tokenizer.apply_chat_template(
102
- messages,
103
- tokenize=False,
104
- add_generation_prompt=True,
105
- )
106
-
107
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
108
- generated_ids = model.generate(
109
- **model_inputs,
110
- max_new_tokens=512,
111
- temperature=0.7,
112
- top_p=0.95,
113
- )
114
-
115
- generated_ids = [
116
- output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
117
- ]
118
- return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
119
-
120
 
121
  @gpu_decorator
122
  def infer(
123
- ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
124
  ):
125
  ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
126
-
127
- if model == "F5-TTS":
128
- ema_model = F5TTS_ema_model
129
- elif model == "E2-TTS":
130
- global E2TTS_ema_model
131
- if E2TTS_ema_model is None:
132
- show_info("Loading E2-TTS model...")
133
- E2TTS_ema_model = load_e2tts()
134
- ema_model = E2TTS_ema_model
135
- elif isinstance(model, list) and model[0] == "Custom":
136
- assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
137
- global custom_ema_model, pre_custom_path
138
- if pre_custom_path != model[1]:
139
- show_info("Loading Custom TTS model...")
140
- custom_ema_model = load_custom(model[1], vocab_path=model[2])
141
- pre_custom_path = model[1]
142
- ema_model = custom_ema_model
143
-
144
  final_wave, final_sample_rate, combined_spectrogram = infer_process(
145
  ref_audio,
146
  ref_text.lower().strip(),
@@ -152,691 +72,326 @@ def infer(
152
  show_info=show_info,
153
  progress=gr.Progress(),
154
  )
155
-
156
- # Remove silence
157
  if remove_silence:
158
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
159
  sf.write(f.name, final_wave, final_sample_rate)
160
  remove_silence_for_generated_wav(f.name)
161
  final_wave, _ = torchaudio.load(f.name)
162
  final_wave = final_wave.squeeze().cpu().numpy()
163
-
164
- # Save the spectrogram
165
  with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
166
  spectrogram_path = tmp_spectrogram.name
167
  save_spectrogram(combined_spectrogram, spectrogram_path)
168
-
169
  return (final_sample_rate, final_wave), spectrogram_path, ref_text
170
 
171
-
172
- with gr.Blocks() as app_credits:
173
- gr.Markdown("""
174
- # Credits
175
-
176
- * [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
177
- * [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
178
- * [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
179
- """)
180
- with gr.Blocks() as app_tts:
181
- gr.Markdown("# Batched TTS")
182
- ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
183
- gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
184
- generate_btn = gr.Button("Synthesize", variant="primary")
185
- with gr.Accordion("Advanced Settings", open=False):
186
- ref_text_input = gr.Textbox(
187
- label="Reference Text",
188
- info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
189
- lines=2,
190
- )
191
- remove_silence = gr.Checkbox(
192
- label="Remove Silences",
193
- info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
194
- value=False,
195
- )
196
- speed_slider = gr.Slider(
197
- label="Speed",
198
- minimum=0.3,
199
- maximum=2.0,
200
- value=1.0,
201
- step=0.1,
202
- info="Adjust the speed of the audio.",
203
- )
204
- cross_fade_duration_slider = gr.Slider(
205
- label="Cross-Fade Duration (s)",
206
- minimum=0.0,
207
- maximum=1.0,
208
- value=0.15,
209
- step=0.01,
210
- info="Set the duration of the cross-fade between audio clips.",
211
- )
212
-
213
- audio_output = gr.Audio(label="Synthesized Audio")
214
- spectrogram_output = gr.Image(label="Spectrogram")
215
-
216
- @gpu_decorator
217
- def basic_tts(
218
- ref_audio_input,
219
- ref_text_input,
220
- gen_text_input,
221
- remove_silence,
222
- cross_fade_duration_slider,
223
- speed_slider,
224
- ):
225
- audio_out, spectrogram_path, ref_text_out = infer(
226
- ref_audio_input,
227
- ref_text_input,
228
- gen_text_input,
229
- tts_model_choice,
230
- remove_silence,
231
- cross_fade_duration_slider,
232
- speed_slider,
233
- )
234
- return audio_out, spectrogram_path, gr.update(value=ref_text_out)
235
-
236
- generate_btn.click(
237
- basic_tts,
238
- inputs=[
239
- ref_audio_input,
240
- ref_text_input,
241
- gen_text_input,
242
- remove_silence,
243
- cross_fade_duration_slider,
244
- speed_slider,
245
- ],
246
- outputs=[audio_output, spectrogram_output, ref_text_input],
247
- )
248
-
249
-
250
- def parse_speechtypes_text(gen_text):
251
- # Pattern to find {speechtype}
252
- pattern = r"\{(.*?)\}"
253
-
254
- # Split the text by the pattern
255
- tokens = re.split(pattern, gen_text)
256
-
257
- segments = []
258
-
259
- current_style = "Regular"
260
-
261
- for i in range(len(tokens)):
262
- if i % 2 == 0:
263
- # This is text
264
- text = tokens[i].strip()
265
- if text:
266
- segments.append({"style": current_style, "text": text})
267
- else:
268
- # This is style
269
- style = tokens[i].strip()
270
- current_style = style
271
-
272
- return segments
273
-
274
-
275
- with gr.Blocks() as app_multistyle:
276
- # New section for multistyle generation
277
- gr.Markdown(
278
- """
279
- # Multiple Speech-Type Generation
280
-
281
- This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
282
- """
283
- )
284
-
285
- with gr.Row():
286
- gr.Markdown(
287
- """
288
- **Example Input:**
289
- {Regular} Hello, I'd like to order a sandwich please.
290
- {Surprised} What do you mean you're out of bread?
291
- {Sad} I really wanted a sandwich though...
292
- {Angry} You know what, darn you and your little shop!
293
- {Whisper} I'll just go back home and cry now.
294
- {Shouting} Why me?!
295
- """
296
- )
297
-
298
- gr.Markdown(
299
- """
300
- **Example Input 2:**
301
- {Speaker1_Happy} Hello, I'd like to order a sandwich please.
302
- {Speaker2_Regular} Sorry, we're out of bread.
303
- {Speaker1_Sad} I really wanted a sandwich though...
304
- {Speaker2_Whisper} I'll give you the last one I was hiding.
305
- """
306
- )
307
-
308
- gr.Markdown(
309
- "Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
310
- )
311
-
312
- # Regular speech type (mandatory)
313
- with gr.Row():
314
- with gr.Column():
315
- regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
316
- regular_insert = gr.Button("Insert Label", variant="secondary")
317
- regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
318
- regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
319
-
320
- # Regular speech type (max 100)
321
- max_speech_types = 100
322
- speech_type_rows = [] # 99
323
- speech_type_names = [regular_name] # 100
324
- speech_type_audios = [regular_audio] # 100
325
- speech_type_ref_texts = [regular_ref_text] # 100
326
- speech_type_delete_btns = [] # 99
327
- speech_type_insert_btns = [regular_insert] # 100
328
-
329
- # Additional speech types (99 more)
330
- for i in range(max_speech_types - 1):
331
- with gr.Row(visible=False) as row:
332
- with gr.Column():
333
- name_input = gr.Textbox(label="Speech Type Name")
334
- delete_btn = gr.Button("Delete Type", variant="secondary")
335
- insert_btn = gr.Button("Insert Label", variant="secondary")
336
- audio_input = gr.Audio(label="Reference Audio", type="filepath")
337
- ref_text_input = gr.Textbox(label="Reference Text", lines=2)
338
- speech_type_rows.append(row)
339
- speech_type_names.append(name_input)
340
- speech_type_audios.append(audio_input)
341
- speech_type_ref_texts.append(ref_text_input)
342
- speech_type_delete_btns.append(delete_btn)
343
- speech_type_insert_btns.append(insert_btn)
344
-
345
- # Button to add speech type
346
- add_speech_type_btn = gr.Button("Add Speech Type")
347
-
348
- # Keep track of current number of speech types
349
- speech_type_count = gr.State(value=1)
350
-
351
- # Function to add a speech type
352
- def add_speech_type_fn(speech_type_count):
353
- if speech_type_count < max_speech_types:
354
- speech_type_count += 1
355
- # Prepare updates for the rows
356
- row_updates = []
357
- for i in range(1, max_speech_types):
358
- if i < speech_type_count:
359
- row_updates.append(gr.update(visible=True))
360
- else:
361
- row_updates.append(gr.update())
362
- else:
363
- # Optionally, show a warning
364
- row_updates = [gr.update() for _ in range(1, max_speech_types)]
365
- return [speech_type_count] + row_updates
366
-
367
- add_speech_type_btn.click(
368
- add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows
369
- )
370
-
371
- # Function to delete a speech type
372
- def make_delete_speech_type_fn(index):
373
- def delete_speech_type_fn(speech_type_count):
374
- # Prepare updates
375
- row_updates = []
376
-
377
- for i in range(1, max_speech_types):
378
- if i == index:
379
- row_updates.append(gr.update(visible=False))
380
- else:
381
- row_updates.append(gr.update())
382
-
383
- speech_type_count = max(1, speech_type_count)
384
-
385
- return [speech_type_count] + row_updates
386
-
387
- return delete_speech_type_fn
388
-
389
- # Update delete button clicks
390
- for i, delete_btn in enumerate(speech_type_delete_btns):
391
- delete_fn = make_delete_speech_type_fn(i)
392
- delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows)
393
-
394
- # Text input for the prompt
395
- gen_text_input_multistyle = gr.Textbox(
396
- label="Text to Generate",
397
- lines=10,
398
- placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
399
- )
400
-
401
- def make_insert_speech_type_fn(index):
402
- def insert_speech_type_fn(current_text, speech_type_name):
403
- current_text = current_text or ""
404
- speech_type_name = speech_type_name or "None"
405
- updated_text = current_text + f"{{{speech_type_name}}} "
406
- return gr.update(value=updated_text)
407
-
408
- return insert_speech_type_fn
409
-
410
- for i, insert_btn in enumerate(speech_type_insert_btns):
411
- insert_fn = make_insert_speech_type_fn(i)
412
- insert_btn.click(
413
- insert_fn,
414
- inputs=[gen_text_input_multistyle, speech_type_names[i]],
415
- outputs=gen_text_input_multistyle,
416
- )
417
-
418
- with gr.Accordion("Advanced Settings", open=False):
419
- remove_silence_multistyle = gr.Checkbox(
420
- label="Remove Silences",
421
- value=True,
422
- )
423
-
424
- # Generate button
425
- generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
426
-
427
- # Output audio
428
- audio_output_multistyle = gr.Audio(label="Synthesized Audio")
429
-
430
- @gpu_decorator
431
- def generate_multistyle_speech(
432
- gen_text,
433
- *args,
434
- ):
435
- speech_type_names_list = args[:max_speech_types]
436
- speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
437
- speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
438
- remove_silence = args[3 * max_speech_types]
439
- # Collect the speech types and their audios into a dict
440
- speech_types = OrderedDict()
441
-
442
- ref_text_idx = 0
443
- for name_input, audio_input, ref_text_input in zip(
444
- speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
445
- ):
446
- if name_input and audio_input:
447
- speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
448
- else:
449
- speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
450
- ref_text_idx += 1
451
-
452
- # Parse the gen_text into segments
453
- segments = parse_speechtypes_text(gen_text)
454
-
455
- # For each segment, generate speech
456
- generated_audio_segments = []
457
- current_style = "Regular"
458
-
459
- for segment in segments:
460
- style = segment["style"]
461
- text = segment["text"]
462
-
463
- if style in speech_types:
464
- current_style = style
465
- else:
466
- # If style not available, default to Regular
467
- current_style = "Regular"
468
-
469
- ref_audio = speech_types[current_style]["audio"]
470
- ref_text = speech_types[current_style].get("ref_text", "")
471
-
472
- # Generate speech for this segment
473
- audio_out, _, ref_text_out = infer(
474
- ref_audio, ref_text, text, tts_model_choice, remove_silence, 0, show_info=print
475
- ) # show_info=print no pull to top when generating
476
- sr, audio_data = audio_out
477
-
478
- generated_audio_segments.append(audio_data)
479
- speech_types[current_style]["ref_text"] = ref_text_out
480
-
481
- # Concatenate all audio segments
482
- if generated_audio_segments:
483
- final_audio_data = np.concatenate(generated_audio_segments)
484
- return [(sr, final_audio_data)] + [
485
- gr.update(value=speech_types[style]["ref_text"]) for style in speech_types
486
- ]
487
- else:
488
- gr.Warning("No audio generated.")
489
- return [None] + [gr.update(value=speech_types[style]["ref_text"]) for style in speech_types]
490
-
491
- generate_multistyle_btn.click(
492
- generate_multistyle_speech,
493
- inputs=[
494
- gen_text_input_multistyle,
495
- ]
496
- + speech_type_names
497
- + speech_type_audios
498
- + speech_type_ref_texts
499
- + [
500
- remove_silence_multistyle,
501
- ],
502
- outputs=[audio_output_multistyle] + speech_type_ref_texts,
503
- )
504
-
505
- # Validation function to disable Generate button if speech types are missing
506
- def validate_speech_types(gen_text, regular_name, *args):
507
- speech_type_names_list = args[:max_speech_types]
508
-
509
- # Collect the speech types names
510
- speech_types_available = set()
511
- if regular_name:
512
- speech_types_available.add(regular_name)
513
- for name_input in speech_type_names_list:
514
- if name_input:
515
- speech_types_available.add(name_input)
516
-
517
- # Parse the gen_text to get the speech types used
518
- segments = parse_speechtypes_text(gen_text)
519
- speech_types_in_text = set(segment["style"] for segment in segments)
520
-
521
- # Check if all speech types in text are available
522
- missing_speech_types = speech_types_in_text - speech_types_available
523
-
524
- if missing_speech_types:
525
- # Disable the generate button
526
- return gr.update(interactive=False)
527
- else:
528
- # Enable the generate button
529
- return gr.update(interactive=True)
530
-
531
- gen_text_input_multistyle.change(
532
- validate_speech_types,
533
- inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
534
- outputs=generate_multistyle_btn,
535
- )
536
-
537
-
538
- with gr.Blocks() as app_chat:
539
- gr.Markdown(
540
- """
541
- # Voice Chat
542
- Have a conversation with an AI using your reference voice!
543
- 1. Upload a reference audio clip and optionally its transcript.
544
- 2. Load the chat model.
545
- 3. Record your message through your microphone.
546
- 4. The AI will respond using the reference voice.
547
  """
548
- )
549
-
550
- if not USING_SPACES:
551
- load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
552
-
553
- chat_interface_container = gr.Column(visible=False)
554
 
555
- @gpu_decorator
556
- def load_chat_model():
557
- global chat_model_state, chat_tokenizer_state
558
- if chat_model_state is None:
559
- show_info = gr.Info
560
- show_info("Loading chat model...")
561
- model_name = "Qwen/Qwen2.5-3B-Instruct"
562
- chat_model_state = AutoModelForCausalLM.from_pretrained(
563
- model_name, torch_dtype="auto", device_map="auto"
 
 
 
 
 
 
 
 
564
  )
565
- chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
566
- show_info("Chat model loaded.")
567
-
568
- return gr.update(visible=False), gr.update(visible=True)
569
-
570
- load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
571
-
572
- else:
573
- chat_interface_container = gr.Column()
574
-
575
- if chat_model_state is None:
576
- model_name = "Qwen/Qwen2.5-3B-Instruct"
577
- chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
578
- chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
579
-
580
- with chat_interface_container:
581
- with gr.Row():
582
- with gr.Column():
583
- ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
584
- with gr.Column():
585
- with gr.Accordion("Advanced Settings", open=False):
586
- remove_silence_chat = gr.Checkbox(
587
- label="Remove Silences",
588
- value=True,
589
- )
590
- ref_text_chat = gr.Textbox(
591
- label="Reference Text",
592
- info="Optional: Leave blank to auto-transcribe",
593
- lines=2,
594
- )
595
- system_prompt_chat = gr.Textbox(
596
- label="System Prompt",
597
- value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
598
- lines=2,
599
- )
600
-
601
- chatbot_interface = gr.Chatbot(label="Conversation")
602
-
603
- with gr.Row():
604
- with gr.Column():
605
- audio_input_chat = gr.Microphone(
606
- label="Speak your message",
607
- type="filepath",
608
  )
609
- audio_output_chat = gr.Audio(autoplay=True)
610
- with gr.Column():
611
- text_input_chat = gr.Textbox(
612
- label="Type your message",
613
- lines=1,
 
 
614
  )
615
- send_btn_chat = gr.Button("Send Message")
616
- clear_btn_chat = gr.Button("Clear Conversation")
617
-
618
- conversation_state = gr.State(
619
- value=[
620
- {
621
- "role": "system",
622
- "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
623
- }
624
- ]
625
- )
626
-
627
- # Modify process_audio_input to use model and tokenizer from state
628
- @gpu_decorator
629
- def process_audio_input(audio_path, text, history, conv_state):
630
- """Handle audio or text input from user"""
631
-
632
- if not audio_path and not text.strip():
633
- return history, conv_state, ""
634
-
635
- if audio_path:
636
- text = preprocess_ref_audio_text(audio_path, text)[1]
637
-
638
- if not text.strip():
639
- return history, conv_state, ""
640
-
641
- conv_state.append({"role": "user", "content": text})
642
- history.append((text, None))
643
-
644
- response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
645
-
646
- conv_state.append({"role": "assistant", "content": response})
647
- history[-1] = (text, response)
648
-
649
- return history, conv_state, ""
650
-
651
- @gpu_decorator
652
- def generate_audio_response(history, ref_audio, ref_text, remove_silence):
653
- """Generate TTS audio for AI response"""
654
- if not history or not ref_audio:
655
- return None
656
 
657
- last_user_message, last_ai_response = history[-1]
658
- if not last_ai_response:
659
- return None
660
 
661
- audio_result, _, ref_text_out = infer(
662
- ref_audio,
663
- ref_text,
664
- last_ai_response,
665
- tts_model_choice,
666
  remove_silence,
667
- cross_fade_duration=0.15,
668
- speed=1.0,
669
- show_info=print, # show_info=print no pull to top when generating
670
- )
671
- return audio_result, gr.update(value=ref_text_out)
672
-
673
- def clear_conversation():
674
- """Reset the conversation"""
675
- return [], [
676
- {
677
- "role": "system",
678
- "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
679
- }
680
- ]
681
-
682
- def update_system_prompt(new_prompt):
683
- """Update the system prompt and reset the conversation"""
684
- new_conv_state = [{"role": "system", "content": new_prompt}]
685
- return [], new_conv_state
686
-
687
- # Handle audio input
688
- audio_input_chat.stop_recording(
689
- process_audio_input,
690
- inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
691
- outputs=[chatbot_interface, conversation_state],
692
- ).then(
693
- generate_audio_response,
694
- inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
695
- outputs=[audio_output_chat, ref_text_chat],
696
- ).then(
697
- lambda: None,
698
- None,
699
- audio_input_chat,
700
- )
701
-
702
- # Handle text input
703
- text_input_chat.submit(
704
- process_audio_input,
705
- inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
706
- outputs=[chatbot_interface, conversation_state],
707
- ).then(
708
- generate_audio_response,
709
- inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
710
- outputs=[audio_output_chat, ref_text_chat],
711
- ).then(
712
- lambda: None,
713
- None,
714
- text_input_chat,
715
- )
716
-
717
- # Handle send button
718
- send_btn_chat.click(
719
- process_audio_input,
720
- inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
721
- outputs=[chatbot_interface, conversation_state],
722
- ).then(
723
- generate_audio_response,
724
- inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
725
- outputs=[audio_output_chat, ref_text_chat],
726
- ).then(
727
- lambda: None,
728
- None,
729
- text_input_chat,
730
- )
731
-
732
- # Handle clear button
733
- clear_btn_chat.click(
734
- clear_conversation,
735
- outputs=[chatbot_interface, conversation_state],
736
- )
737
-
738
- # Handle system prompt change and reset conversation
739
- system_prompt_chat.change(
740
- update_system_prompt,
741
- inputs=system_prompt_chat,
742
- outputs=[chatbot_interface, conversation_state],
743
- )
744
-
745
-
746
- with gr.Blocks() as app:
747
- gr.Markdown(
748
- """
749
- # E2/F5 TTS
750
-
751
- This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
752
-
753
- * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
754
- * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
755
-
756
- The checkpoints currently support English and Chinese.
757
-
758
- If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s with ✂ in the bottom right corner (otherwise might have non-optimal auto-trimmed result).
759
-
760
- **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
761
- """
762
- )
763
-
764
- last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom.txt")
765
-
766
- def load_last_used_custom():
767
- try:
768
- with open(last_used_custom, "r") as f:
769
- return f.read().split(",")
770
- except FileNotFoundError:
771
- last_used_custom.parent.mkdir(parents=True, exist_ok=True)
772
- return [
773
- "hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
774
- "hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
775
- ]
776
-
777
- def switch_tts_model(new_choice):
778
- global tts_model_choice
779
- if new_choice == "Custom": # override in case webpage is refreshed
780
- custom_ckpt_path, custom_vocab_path = load_last_used_custom()
781
- tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path]
782
- return gr.update(visible=True, value=custom_ckpt_path), gr.update(visible=True, value=custom_vocab_path)
783
- else:
784
- tts_model_choice = new_choice
785
- return gr.update(visible=False), gr.update(visible=False)
786
-
787
- def set_custom_model(custom_ckpt_path, custom_vocab_path):
788
- global tts_model_choice
789
- tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path]
790
- with open(last_used_custom, "w") as f:
791
- f.write(f"{custom_ckpt_path},{custom_vocab_path}")
792
 
793
- with gr.Row():
794
- if not USING_SPACES:
795
- choose_tts_model = gr.Radio(
796
- choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797
  )
798
- else:
799
- choose_tts_model = gr.Radio(
800
- choices=[DEFAULT_TTS_MODEL, "E2-TTS"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801
  )
802
- custom_ckpt_path = gr.Dropdown(
803
- choices=["hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"],
804
- value=load_last_used_custom()[0],
805
- allow_custom_value=True,
806
- label="MODEL CKPT: local_path | hf://user_id/repo_id/model_ckpt",
807
- visible=False,
808
- )
809
- custom_vocab_path = gr.Dropdown(
810
- choices=["hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt"],
811
- value=load_last_used_custom()[1],
812
- allow_custom_value=True,
813
- label="VOCAB FILE: local_path | hf://user_id/repo_id/vocab_file",
814
- visible=False,
815
- )
816
-
817
- choose_tts_model.change(
818
- switch_tts_model,
819
- inputs=[choose_tts_model],
820
- outputs=[custom_ckpt_path, custom_vocab_path],
821
- show_progress="hidden",
822
- )
823
- custom_ckpt_path.change(
824
- set_custom_model,
825
- inputs=[custom_ckpt_path, custom_vocab_path],
826
- show_progress="hidden",
827
- )
828
- custom_vocab_path.change(
829
- set_custom_model,
830
- inputs=[custom_ckpt_path, custom_vocab_path],
831
- show_progress="hidden",
832
- )
833
-
834
- gr.TabbedInterface(
835
- [app_tts, app_multistyle, app_chat, app_credits],
836
- ["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
837
- )
838
-
839
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840
  @click.command()
841
  @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
842
  @click.option("--host", "-H", default=None, help="Host to run the app on")
@@ -853,9 +408,8 @@ def main(port, host, share, api):
853
  print("Starting app...")
854
  app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
855
 
856
-
857
  if __name__ == "__main__":
858
  if not USING_SPACES:
859
  main()
860
  else:
861
- app.queue().launch()
 
 
 
 
1
  import re
2
  import tempfile
3
  from collections import OrderedDict
 
 
4
  import click
5
  import gradio as gr
6
  import numpy as np
7
  import soundfile as sf
8
  import torchaudio
9
  from cached_path import cached_path
10
+ from sentence_analyzer import SentenceAnalyzer
11
+ from f5_tts.model import DiT
12
+ from f5_tts.infer.utils_infer import (
13
+ load_vocoder,
14
+ load_model,
15
+ preprocess_ref_audio_text,
16
+ infer_process,
17
+ remove_silence_for_generated_wav,
18
+ save_spectrogram,
19
+ )
20
  try:
21
  import spaces
 
22
  USING_SPACES = True
23
  except ImportError:
24
  USING_SPACES = False
25
 
26
 
27
+ import nltk
28
+ nltk.download('punkt_tab')
29
+
30
  def gpu_decorator(func):
31
  if USING_SPACES:
32
  return spaces.GPU(func)
33
  else:
34
  return func
35
 
36
+ # Carregar vocoder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  vocoder = load_vocoder()
38
 
 
39
  import os
40
  from huggingface_hub import hf_hub_download
 
41
  def load_f5tts():
42
  # Carrega o caminho do repositório e o nome do arquivo das variáveis de ambiente
43
  repo_id = os.getenv("MODEL_REPO_ID", "SWivid/F5-TTS/F5TTS_Base")
44
  filename = os.getenv("MODEL_FILENAME", "model_1200000.safetensors")
45
  token = os.getenv("HUGGINGFACE_TOKEN")
 
46
  # Valida se o token está presente
47
  if not token:
48
  raise ValueError("A variável de ambiente 'HUGGINGFACE_TOKEN' não foi definida.")
 
49
  # Faz o download do modelo do repositório privado
50
  ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename, use_auth_token=token)
51
 
52
  F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
53
  return load_model(DiT, F5TTS_model_cfg, ckpt_path)
54
 
55
+ # Carregar modelo F5TTS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  F5TTS_ema_model = load_f5tts()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  @gpu_decorator
59
  def infer(
60
+ ref_audio_orig, ref_text, gen_text, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
61
  ):
62
  ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
63
+ ema_model = F5TTS_ema_model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  final_wave, final_sample_rate, combined_spectrogram = infer_process(
65
  ref_audio,
66
  ref_text.lower().strip(),
 
72
  show_info=show_info,
73
  progress=gr.Progress(),
74
  )
75
+ # Remover silêncios
 
76
  if remove_silence:
77
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
78
  sf.write(f.name, final_wave, final_sample_rate)
79
  remove_silence_for_generated_wav(f.name)
80
  final_wave, _ = torchaudio.load(f.name)
81
  final_wave = final_wave.squeeze().cpu().numpy()
82
+ # Salvar espectrograma
 
83
  with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
84
  spectrogram_path = tmp_spectrogram.name
85
  save_spectrogram(combined_spectrogram, spectrogram_path)
 
86
  return (final_sample_rate, final_wave), spectrogram_path, ref_text
87
 
88
+ # Estilos CSS
89
+ custom_css = """
90
+ #sentences-container {
91
+ border: 1px solid #ddd;
92
+ border-radius: 4px;
93
+ padding: 10px;
94
+ margin-bottom: 10px;
95
+ }
96
+ .sentence-box {
97
+ border: 1px solid #eee;
98
+ padding: 5px;
99
+ margin-bottom: 5px;
100
+ border-radius: 4px;
101
+ background-color: #f9f9f9;
102
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  """
 
 
 
 
 
 
104
 
105
+ with gr.Blocks(css=custom_css) as app:
106
+ with gr.Tabs():
107
+ with gr.Tab("TTS Básico"):
108
+ gr.Markdown("# TTS Básico com F5-TTS")
109
+ ref_audio_input = gr.Audio(label="Áudio de Referência", type="filepath")
110
+ gen_text_input = gr.Textbox(label="Texto para Gerar", lines=10)
111
+ generate_btn = gr.Button("Sintetizar", variant="primary")
112
+
113
+ # Container para as sentenças
114
+ with gr.Row(elem_id="sentences-container"):
115
+ sentences_output = gr.Textbox(label="Sentenças", lines=10, interactive=False)
116
+
117
+ with gr.Accordion("Configurações Avançadas", open=False):
118
+ ref_text_input = gr.Textbox(
119
+ label="Texto de Referência",
120
+ info="Deixe em branco para transcrever automaticamente o áudio de referência. Se você inserir texto, ele substituirá a transcrição automática.",
121
+ lines=2,
122
  )
123
+ remove_silence = gr.Checkbox(
124
+ label="Remover Silêncios",
125
+ info="O modelo tende a produzir silêncios, especialmente em áudios mais longos. Podemos remover manualmente os silêncios, se necessário. Isso também aumentará o tempo de geração.",
126
+ value=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  )
128
+ speed_slider = gr.Slider(
129
+ label="Velocidade",
130
+ minimum=0.3,
131
+ maximum=2.0,
132
+ value=1.0,
133
+ step=0.1,
134
+ info="Ajuste a velocidade do áudio.",
135
  )
136
+ cross_fade_duration_slider = gr.Slider(
137
+ label="Duração do Cross-fade (s)",
138
+ minimum=0.0,
139
+ maximum=1.0,
140
+ value=0.15,
141
+ step=0.01,
142
+ info="Defina a duração do cross-fade entre os clipes de áudio.",
143
+ )
144
+ audio_output = gr.Audio(label="Áudio Sintetizado")
145
+ spectrogram_output = gr.Image(label="Espectrograma")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
+ analyzer = SentenceAnalyzer()
 
 
148
 
149
+ @gpu_decorator
150
+ def basic_tts(
151
+ ref_audio_input,
152
+ ref_text_input,
153
+ gen_text_input,
154
  remove_silence,
155
+ cross_fade_duration_slider,
156
+ speed_slider,
157
+ ):
158
+ # Divida o texto em sentenças
159
+ sentences = analyzer.split_into_sentences(gen_text_input)
160
+
161
+ # Exiba as sentenças com formatação
162
+ formatted_sentences = "".join([
163
+ f'<div class="sentence-box">{sentence}</div>'
164
+ for sentence in sentences
165
+ ])
166
+ sentences_output.update(value=formatted_sentences)
167
+
168
+ # Gere áudio para cada sentença individualmente
169
+ audio_segments = []
170
+ for sentence in sentences:
171
+ audio_out, spectrogram_path, ref_text_out = infer(
172
+ ref_audio_input,
173
+ ref_text_input,
174
+ sentence, # Gere áudio para a sentença atual
175
+ remove_silence,
176
+ cross_fade_duration_slider,
177
+ speed_slider,
178
+ )
179
+ sr, audio_data = audio_out
180
+ audio_segments.append(audio_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
+ # Concatene os segmentos de áudio
183
+ if audio_segments:
184
+ final_audio_data = np.concatenate(audio_segments)
185
+ return (sr, final_audio_data), spectrogram_path, gr.update(value=ref_text_out)
186
+ else:
187
+ gr.Warning("Nenhum áudio gerado.")
188
+ return None, None, gr.update(value=ref_text_out)
189
+
190
+ generate_btn.click(
191
+ basic_tts,
192
+ inputs=[
193
+ ref_audio_input,
194
+ ref_text_input,
195
+ gen_text_input,
196
+ remove_silence,
197
+ cross_fade_duration_slider,
198
+ speed_slider,
199
+ ],
200
+ outputs=[audio_output, spectrogram_output, ref_text_input],
201
  )
202
+
203
+ with gr.Tab("Multi-Speech"):
204
+ gr.Markdown("# Geração Multi-Speech com F5-TTS")
205
+
206
+ # Regular speech type (mandatory)
207
+ with gr.Row():
208
+ with gr.Column():
209
+ regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
210
+ regular_insert = gr.Button("Insert Label", variant="secondary")
211
+ regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
212
+ regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
213
+ # Regular speech type (max 100)
214
+ max_speech_types = 100
215
+ speech_type_rows = [] # 99
216
+ speech_type_names = [regular_name] # 100
217
+ speech_type_audios = [regular_audio] # 100
218
+ speech_type_ref_texts = [regular_ref_text] # 100
219
+ speech_type_delete_btns = [] # 99
220
+ speech_type_insert_btns = [regular_insert] # 100
221
+ # Additional speech types (99 more)
222
+ for i in range(max_speech_types - 1):
223
+ with gr.Row(visible=False) as row:
224
+ with gr.Column():
225
+ name_input = gr.Textbox(label="Speech Type Name")
226
+ delete_btn = gr.Button("Delete Type", variant="secondary")
227
+ insert_btn = gr.Button("Insert Label", variant="secondary")
228
+ audio_input = gr.Audio(label="Reference Audio", type="filepath")
229
+ ref_text_input = gr.Textbox(label="Reference Text", lines=2)
230
+ speech_type_rows.append(row)
231
+ speech_type_names.append(name_input)
232
+ speech_type_audios.append(audio_input)
233
+ speech_type_ref_texts.append(ref_text_input)
234
+ speech_type_delete_btns.append(delete_btn)
235
+ speech_type_insert_btns.append(insert_btn)
236
+ # Button to add speech type
237
+ add_speech_type_btn = gr.Button("Add Speech Type")
238
+ # Keep track of current number of speech types
239
+ speech_type_count = gr.State(value=1)
240
+ # Function to add a speech type
241
+ def add_speech_type_fn(speech_type_count):
242
+ if speech_type_count < max_speech_types:
243
+ speech_type_count += 1
244
+ # Prepare updates for the rows
245
+ row_updates = []
246
+ for i in range(1, max_speech_types):
247
+ if i < speech_type_count:
248
+ row_updates.append(gr.update(visible=True))
249
+ else:
250
+ row_updates.append(gr.update())
251
+ else:
252
+ # Optionally, show a warning
253
+ row_updates = [gr.update() for _ in range(1, max_speech_types)]
254
+ return [speech_type_count] + row_updates
255
+ add_speech_type_btn.click(
256
+ add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows
257
  )
258
+ # Function to delete a speech type
259
+ def make_delete_speech_type_fn(index):
260
+ def delete_speech_type_fn(speech_type_count):
261
+ # Prepare updates
262
+ row_updates = []
263
+ for i in range(1, max_speech_types):
264
+ if i == index:
265
+ row_updates.append(gr.update(visible=False))
266
+ else:
267
+ row_updates.append(gr.update())
268
+ speech_type_count = max(1, speech_type_count)
269
+ return [speech_type_count] + row_updates
270
+ return delete_speech_type_fn
271
+ # Update delete button clicks
272
+ for i, delete_btn in enumerate(speech_type_delete_btns):
273
+ delete_fn = make_delete_speech_type_fn(i)
274
+ delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows)
275
+ # Text input for the prompt
276
+ gen_text_input_multistyle = gr.Textbox(
277
+ label="Text to Generate",
278
+ lines=10,
279
+ placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
280
+ )
281
+ def make_insert_speech_type_fn(index):
282
+ def insert_speech_type_fn(current_text, speech_type_name):
283
+ current_text = current_text or ""
284
+ speech_type_name = speech_type_name or "None"
285
+ updated_text = current_text + f"{{{speech_type_name}}} "
286
+ return gr.update(value=updated_text)
287
+ return insert_speech_type_fn
288
+ for i, insert_btn in enumerate(speech_type_insert_btns):
289
+ insert_fn = make_insert_speech_type_fn(i)
290
+ insert_btn.click(
291
+ insert_fn,
292
+ inputs=[gen_text_input_multistyle, speech_type_names[i]],
293
+ outputs=gen_text_input_multistyle,
294
+ )
295
+ with gr.Accordion("Advanced Settings", open=False):
296
+ remove_silence_multistyle = gr.Checkbox(
297
+ label="Remove Silences",
298
+ value=True,
299
+ )
300
+ # Generate button
301
+ generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
302
+ # Output audio
303
+ audio_output_multistyle = gr.Audio(label="Synthesized Audio")
304
+ @gpu_decorator
305
+ def generate_multistyle_speech(
306
+ gen_text,
307
+ *args,
308
+ ):
309
+ speech_type_names_list = args[:max_speech_types]
310
+ speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
311
+ speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
312
+ remove_silence = args[3 * max_speech_types]
313
+ # Collect the speech types and their audios into a dict
314
+ speech_types = OrderedDict()
315
+ ref_text_idx = 0
316
+ for name_input, audio_input, ref_text_input in zip(
317
+ speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
318
+ ):
319
+ if name_input and audio_input:
320
+ speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
321
+ else:
322
+ speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
323
+ ref_text_idx += 1
324
+ # Parse the gen_text into segments
325
+ segments = parse_speechtypes_text(gen_text)
326
+ # For each segment, generate speech
327
+ generated_audio_segments = []
328
+ current_style = "Regular"
329
+ for segment in segments:
330
+ style = segment["style"]
331
+ text = segment["text"]
332
+ if style in speech_types:
333
+ current_style = style
334
+ else:
335
+ # If style not available, default to Regular
336
+ current_style = "Regular"
337
+ ref_audio = speech_types[current_style]["audio"]
338
+ ref_text = speech_types[current_style].get("ref_text", "")
339
+ # Generate speech for this segment
340
+ audio_out, _, ref_text_out = infer(
341
+ ref_audio, ref_text, text, remove_silence, 0, show_info=print
342
+ ) # show_info=print no pull to top when generating
343
+ sr, audio_data = audio_out
344
+ generated_audio_segments.append(audio_data)
345
+ speech_types[current_style]["ref_text"] = ref_text_out
346
+ # Concatenate all audio segments
347
+ if generated_audio_segments:
348
+ final_audio_data = np.concatenate(generated_audio_segments)
349
+ return [(sr, final_audio_data)] + [
350
+ gr.update(value=speech_types[style]["ref_text"]) for style in speech_types
351
+ ]
352
+ else:
353
+ gr.Warning("No audio generated.")
354
+ return [None] + [gr.update(value=speech_types[style]["ref_text"]) for style in speech_types]
355
+ generate_multistyle_btn.click(
356
+ generate_multistyle_speech,
357
+ inputs=[
358
+ gen_text_input_multistyle,
359
+ ]
360
+ + speech_type_names
361
+ + speech_type_audios
362
+ + speech_type_ref_texts
363
+ + [
364
+ remove_silence_multistyle,
365
+ ],
366
+ outputs=[audio_output_multistyle] + speech_type_ref_texts,
367
+ )
368
+ # Validation function to disable Generate button if speech types are missing
369
+ def validate_speech_types(gen_text, regular_name, *args):
370
+ speech_type_names_list = args[:max_speech_types]
371
+ # Collect the speech types names
372
+ speech_types_available = set()
373
+ if regular_name:
374
+ speech_types_available.add(regular_name)
375
+ for name_input in speech_type_names_list:
376
+ if name_input:
377
+ speech_types_available.add(name_input)
378
+ # Parse the gen_text to get the speech types used
379
+ segments = parse_speechtypes_text(gen_text)
380
+ speech_types_in_text = set(segment["style"] for segment in segments)
381
+ # Check if all speech types in text are available
382
+ missing_speech_types = speech_types_in_text - speech_types_available
383
+ if missing_speech_types:
384
+ # Disable the generate button
385
+ return gr.update(interactive=False)
386
+ else:
387
+ # Enable the generate button
388
+ return gr.update(interactive=True)
389
+ gen_text_input_multistyle.change(
390
+ validate_speech_types,
391
+ inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
392
+ outputs=generate_multistyle_btn,
393
+ )
394
+
395
  @click.command()
396
  @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
397
  @click.option("--host", "-H", default=None, help="Host to run the app on")
 
408
  print("Starting app...")
409
  app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
410
 
 
411
  if __name__ == "__main__":
412
  if not USING_SPACES:
413
  main()
414
  else:
415
+ app.queue().launch()