File size: 20,539 Bytes
f3de8ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import requests

import altair as alt
import numpy as np
import pandas as pd
import streamlit as st

from bs4 import BeautifulSoup
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from streamlit_extras.switch_page_button import switch_page
from sklearn.svm import LinearSVC

SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}


class GalleryApp:
    def __init__(self, promptBook, images_ds):
        self.promptBook = promptBook
        self.images_ds = images_ds

    def gallery_standard(self, items, col_num, info):
        rows = len(items) // col_num + 1
        containers = [st.container() for _ in range(rows)]
        for idx in range(0, len(items), col_num):
            row_idx = idx // col_num
            with containers[row_idx]:
                cols = st.columns(col_num)
                for j in range(col_num):
                    if idx + j < len(items):
                        with cols[j]:
                            # show image
                            # image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
                            # image = f"https://modelcofferbucket.s3.us-east-2.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
                            image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
                            st.image(image, use_column_width=True)

                            # handel checkbox information
                            prompt_id = items.iloc[idx + j]['prompt_id']
                            modelVersion_id = items.iloc[idx + j]['modelVersion_id']

                            check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False

                            st.write("Position: ", idx + j)

                            # show checkbox
                            st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)

                            # show selected info
                            for key in info:
                                st.write(f"**{key}**: {items.iloc[idx + j][key]}")

    def selection_panel(self, items):
        # temperal function

        selecters = st.columns([1, 4])

        if 'score_weights' not in st.session_state:
            st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]

        # select sort type
        with selecters[0]:
            sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
            if sort_type == 'Scores':
                sort_by = 'weighted_score_sum'

        # select other options
        with selecters[1]:
            if sort_type == 'IDs and Names':
                sub_selecters = st.columns([3, 1])
                # select sort by
                with sub_selecters[0]:
                    sort_by = st.selectbox('Sort by',
                                           ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
                                           label_visibility='hidden')

                continue_idx = 1

            else:
                # add custom weights
                sub_selecters = st.columns([1, 1, 1, 1])

                with sub_selecters[0]:
                    clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[0], step=0.1, help='the weight for normalized clip score')
                with sub_selecters[1]:
                    mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[1], step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
                with sub_selecters[2]:
                    pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[2], step=0.1, help='the weight for normalized popularity score')

                items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
                    'norm_pop'] * pop_weight, 4)

                continue_idx = 3

                # save latest weights
                st.session_state.score_weights[0] = clip_weight
                st.session_state.score_weights[1] = mcos_weight
                st.session_state.score_weights[2] = pop_weight

            # select threshold
            with sub_selecters[continue_idx]:
                nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=st.session_state.score_weights[3], step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
                items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)

            # save latest threshold
            st.session_state.score_weights[3] = nsfw_threshold

        # draw a distribution histogram
        if sort_type == 'Scores':
            try:
                with st.expander('Show score distribution histogram and select score range'):
                    st.write('**Score distribution histogram**')
                    chart_space = st.container()
                    # st.write('Select the range of scores to show')
                    hist_data = pd.DataFrame(items[sort_by])
                    mini = hist_data[sort_by].min().item()
                    mini = mini//0.1 * 0.1
                    maxi = hist_data[sort_by].max().item()
                    maxi = maxi//0.1 * 0.1 + 0.1
                    st.write('**Select the range of scores to show**')
                    r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
                    with chart_space:
                        st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
                    # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
                    # r = event_dict.get(sort_by)
                    if r:
                        items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
                        # st.write(r)
            except:
                pass

        display_options = st.columns([1, 4])

        with display_options[0]:
            # select order
            order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
            if order == 'Ascending':
                order = True
            else:
                order = False

        with display_options[1]:

            # select info to show
            info = st.multiselect('Show Info',
                                  ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
                                   'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
                                   'nsfw_score', 'norm_nsfw'],
                                  default=sort_by)

        # apply sorting to dataframe
        items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)

        # select number of columns
        col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')

        return items, info, col_num

    def sidebar(self):
        with st.sidebar:
            prompt_tags = self.promptBook['tag'].unique()
            # sort tags by alphabetical order
            prompt_tags = np.sort(prompt_tags)[::-1]

            tag = st.selectbox('Select a tag', prompt_tags)

            items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)

            prompts = np.sort(items['prompt'].unique())[::-1]

            selected_prompt = st.selectbox('Select prompt', prompts)

            items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
            prompt_id = items['prompt_id'].unique()[0]
            note = items['note'].unique()[0]

            # show source
            if isinstance(note, str):
                if note.isdigit():
                    st.caption(f"`Source: civitai`")
                else:
                    st.caption(f"`Source: {note}`")
            else:
                st.caption("`Source: Parti-prompts`")

            # show image metadata
            image_metadatas = ['prompt_id', 'prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
            for key in image_metadatas:
                label = ' '.join(key.split('_')).capitalize()
                st.write(f"**{label}**")
                if items[key][0] == ' ':
                    st.write('`None`')
                else:
                    st.caption(f"{items[key][0]}")

            # for note as civitai image id, add civitai reference
            if isinstance(note, str) and note.isdigit():
                try:
                    st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
                    res = requests.get(f'https://civitai.com/images/{note}')
                    # st.write(res.text)
                    soup = BeautifulSoup(res.text, 'html.parser')
                    image_section = soup.find('div', {'class': 'mantine-12rlksp'})
                    image_url = image_section.find('img')['src']
                    st.image(image_url, use_column_width=True)
                except:
                    pass

        return prompt_tags, tag, prompt_id, items

    def app(self):
        st.title('Model Visualization and Retrieval')
        st.write('This is a gallery of images generated by the models')

        prompt_tags, tag, prompt_id, items = self.sidebar()

        # add safety check for some prompts
        safety_check = True
        unsafe_prompts = {}
        # initialize unsafe prompts
        for prompt_tag in prompt_tags:
            unsafe_prompts[prompt_tag] = []
        # manually add unsafe prompts
        unsafe_prompts['world knowledge'] = [83]
        # unsafe_prompts['art'] = [23]
        unsafe_prompts['abstract'] = [1, 3]
        # unsafe_prompts['food'] = [34]

        if int(prompt_id.item()) in unsafe_prompts[tag]:
            st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
            safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'{prompt_id}')

        if safety_check:
            items, info, col_num = self.selection_panel(items)

            if 'selected_dict' in st.session_state:
                st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
                dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
                dynamic_weight_panel = st.columns(len(dynamic_weight_options))

                if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
                    btn_disable = False
                else:
                    btn_disable = True

                for i in range(len(dynamic_weight_options)):
                    method = dynamic_weight_options[i]
                    with dynamic_weight_panel[i]:
                        btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))

            with st.form(key=f'{prompt_id}'):
                # buttons = st.columns([1, 1, 1])
                buttons_space = st.columns([1, 1, 1, 1])
                gallery_space = st.empty()

                with buttons_space[0]:
                    continue_btn = st.form_submit_button('Confirm Selection', use_container_width=True, type='primary')
                    if continue_btn:
                        self.submit_actions('Continue', prompt_id)

                with buttons_space[1]:
                    select_btn = st.form_submit_button('Select All', use_container_width=True)
                    if select_btn:
                        self.submit_actions('Select', prompt_id)

                with buttons_space[2]:
                    deselect_btn = st.form_submit_button('Deselect All', use_container_width=True)
                    if deselect_btn:
                        self.submit_actions('Deselect', prompt_id)

                with buttons_space[3]:
                    refresh_btn = st.form_submit_button('Refresh', on_click=gallery_space.empty, use_container_width=True)

                with gallery_space.container():
                    with st.spinner('Loading images...'):
                        self.gallery_standard(items, col_num, info)

    def submit_actions(self, status, prompt_id):
        if status == 'Select':
            modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
            st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
            print(st.session_state.selected_dict, 'select')
            st.experimental_rerun()
        elif status == 'Deselect':
            st.session_state.selected_dict[prompt_id] = []
            print(st.session_state.selected_dict, 'deselect')
            st.experimental_rerun()
            # self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
        elif status == 'Continue':
            st.session_state.selected_dict[prompt_id] = []
            for key in st.session_state:
                keys = key.split('_')
                if keys[0] == 'select' and keys[1] == str(prompt_id):
                    if st.session_state[key]:
                        st.session_state.selected_dict[prompt_id].append(int(keys[2]))
            # switch_page("ranking")
            print(st.session_state.selected_dict, 'continue')
            st.experimental_rerun()

    def dynamic_weight(self, prompt_id, items, method='Grid Search'):
        selected = items[
            items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
        optimal_weight = [0, 0, 0]

        if method == 'Grid Search':
            # grid search method
            top_ranking = len(items) * len(selected)

            for clip_weight in np.arange(-1, 1, 0.1):
                for mcos_weight in np.arange(-1, 1, 0.1):
                    for pop_weight in np.arange(-1, 1, 0.1):

                        weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
                        weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
                        # print('weight_all_sorted:', weight_all_sorted)
                        weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']

                        # get the index of values of weight_selected in weight_all_sorted
                        rankings = []
                        for weight in weight_selected:
                            rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
                        if sum(rankings) <= top_ranking:
                            top_ranking = sum(rankings)
                            print('current top ranking:', top_ranking, rankings)
                            optimal_weight = [clip_weight, mcos_weight, pop_weight]
            print('optimal weight:', optimal_weight)

        elif method == 'SVM':
            # svm method
            print('start svm method')
            # get residual dataframe that contains models not selected
            residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
            residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
            residual = residual.to_numpy()
            selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
            selected = selected.to_numpy()

            y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
            X = np.concatenate((selected, residual), axis=0)

            # fit svm model, and get parameters for the hyperplane
            clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
            clf.fit(X, y)
            optimal_weight = clf.coef_[0].tolist()
            print('optimal weight:', optimal_weight)
            pass

        elif method == 'Greedy':
            for idx in selected.index:
                # find which score is the highest, clip, mcos, or pop
                clip_score = selected.loc[idx, 'norm_clip_crop']
                mcos_score = selected.loc[idx, 'norm_mcos_crop']
                pop_score = selected.loc[idx, 'norm_pop']
                if clip_score >= mcos_score and clip_score >= pop_score:
                    optimal_weight[0] += 1
                elif mcos_score >= clip_score and mcos_score >= pop_score:
                    optimal_weight[1] += 1
                elif pop_score >= clip_score and pop_score >= mcos_score:
                    optimal_weight[2] += 1

            # normalize optimal_weight
            optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
            print('optimal weight:', optimal_weight)

        st.session_state.score_weights[0: 3] = optimal_weight


# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
@st.cache_resource
def altair_histogram(hist_data, sort_by, mini, maxi):
    brushed = alt.selection_interval(encodings=['x'], name="brushed")

    chart = (
        alt.Chart(hist_data)
        .mark_bar(opacity=0.7, cornerRadius=2)
        .encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
        # .add_selection(brushed)
        # .properties(width=800, height=300)
    )

    # Create a transparent rectangle for highlighting the range
    highlight = (
        alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
        .mark_rect(opacity=0.3)
        .encode(x='x1', x2='x2')
        # .properties(width=800, height=300)
    )

    # Layer the chart and the highlight rectangle
    layered_chart = alt.layer(chart, highlight)

    return layered_chart


@st.cache_data
def load_hf_dataset():
    # login to huggingface
    login(token=os.environ.get("HF_TOKEN"))

    # load from huggingface
    roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
    promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
    # images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
    images_ds = None  # set to None for now since we use s3 bucket to store images

    # process dataset
    roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
                                                       'model_download_count']].drop_duplicates().reset_index(drop=True)

    # add 'custom_score_weights' column to promptBook if not exist
    if 'weighted_score_sum' not in promptBook.columns:
        promptBook.loc[:, 'weighted_score_sum'] = 0

    # merge roster and promptbook
    promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
                                                                    on=['model_id', 'modelVersion_id'], how='left')

    # add column to record current row index
    promptBook.loc[:, 'row_idx'] = promptBook.index

    return roster, promptBook, images_ds


if __name__ == "__main__":
    st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")

    # remove ranking in the session state if it is created in Ranking.py
    st.session_state.pop('ranking', None)

    if 'user_id' not in st.session_state:
        st.warning('Please log in first.')
        home_btn = st.button('Go to Home Page')
        if home_btn:
            switch_page("home")
    else:
        st.write('You have already logged in as ' + st.session_state.user_id[0])
        roster, promptBook, images_ds = load_hf_dataset()
        # print(promptBook.columns)

        # initialize selected_dict
        if 'selected_dict' not in st.session_state:
            st.session_state['selected_dict'] = {}

        app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
        app.app()