Spaces:
Sleeping
Sleeping
File size: 20,539 Bytes
f3de8ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import os
import requests
import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
from bs4 import BeautifulSoup
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from streamlit_extras.switch_page_button import switch_page
from sklearn.svm import LinearSVC
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}
class GalleryApp:
def __init__(self, promptBook, images_ds):
self.promptBook = promptBook
self.images_ds = images_ds
def gallery_standard(self, items, col_num, info):
rows = len(items) // col_num + 1
containers = [st.container() for _ in range(rows)]
for idx in range(0, len(items), col_num):
row_idx = idx // col_num
with containers[row_idx]:
cols = st.columns(col_num)
for j in range(col_num):
if idx + j < len(items):
with cols[j]:
# show image
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
# image = f"https://modelcofferbucket.s3.us-east-2.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
st.image(image, use_column_width=True)
# handel checkbox information
prompt_id = items.iloc[idx + j]['prompt_id']
modelVersion_id = items.iloc[idx + j]['modelVersion_id']
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False
st.write("Position: ", idx + j)
# show checkbox
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)
# show selected info
for key in info:
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
def selection_panel(self, items):
# temperal function
selecters = st.columns([1, 4])
if 'score_weights' not in st.session_state:
st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]
# select sort type
with selecters[0]:
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
if sort_type == 'Scores':
sort_by = 'weighted_score_sum'
# select other options
with selecters[1]:
if sort_type == 'IDs and Names':
sub_selecters = st.columns([3, 1])
# select sort by
with sub_selecters[0]:
sort_by = st.selectbox('Sort by',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
label_visibility='hidden')
continue_idx = 1
else:
# add custom weights
sub_selecters = st.columns([1, 1, 1, 1])
with sub_selecters[0]:
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[0], step=0.1, help='the weight for normalized clip score')
with sub_selecters[1]:
mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[1], step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
with sub_selecters[2]:
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[2], step=0.1, help='the weight for normalized popularity score')
items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
'norm_pop'] * pop_weight, 4)
continue_idx = 3
# save latest weights
st.session_state.score_weights[0] = clip_weight
st.session_state.score_weights[1] = mcos_weight
st.session_state.score_weights[2] = pop_weight
# select threshold
with sub_selecters[continue_idx]:
nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=st.session_state.score_weights[3], step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)
# save latest threshold
st.session_state.score_weights[3] = nsfw_threshold
# draw a distribution histogram
if sort_type == 'Scores':
try:
with st.expander('Show score distribution histogram and select score range'):
st.write('**Score distribution histogram**')
chart_space = st.container()
# st.write('Select the range of scores to show')
hist_data = pd.DataFrame(items[sort_by])
mini = hist_data[sort_by].min().item()
mini = mini//0.1 * 0.1
maxi = hist_data[sort_by].max().item()
maxi = maxi//0.1 * 0.1 + 0.1
st.write('**Select the range of scores to show**')
r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
with chart_space:
st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
# event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
# r = event_dict.get(sort_by)
if r:
items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
# st.write(r)
except:
pass
display_options = st.columns([1, 4])
with display_options[0]:
# select order
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
if order == 'Ascending':
order = True
else:
order = False
with display_options[1]:
# select info to show
info = st.multiselect('Show Info',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
'nsfw_score', 'norm_nsfw'],
default=sort_by)
# apply sorting to dataframe
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
# select number of columns
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
return items, info, col_num
def sidebar(self):
with st.sidebar:
prompt_tags = self.promptBook['tag'].unique()
# sort tags by alphabetical order
prompt_tags = np.sort(prompt_tags)[::-1]
tag = st.selectbox('Select a tag', prompt_tags)
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
prompts = np.sort(items['prompt'].unique())[::-1]
selected_prompt = st.selectbox('Select prompt', prompts)
items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
prompt_id = items['prompt_id'].unique()[0]
note = items['note'].unique()[0]
# show source
if isinstance(note, str):
if note.isdigit():
st.caption(f"`Source: civitai`")
else:
st.caption(f"`Source: {note}`")
else:
st.caption("`Source: Parti-prompts`")
# show image metadata
image_metadatas = ['prompt_id', 'prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
for key in image_metadatas:
label = ' '.join(key.split('_')).capitalize()
st.write(f"**{label}**")
if items[key][0] == ' ':
st.write('`None`')
else:
st.caption(f"{items[key][0]}")
# for note as civitai image id, add civitai reference
if isinstance(note, str) and note.isdigit():
try:
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
res = requests.get(f'https://civitai.com/images/{note}')
# st.write(res.text)
soup = BeautifulSoup(res.text, 'html.parser')
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
image_url = image_section.find('img')['src']
st.image(image_url, use_column_width=True)
except:
pass
return prompt_tags, tag, prompt_id, items
def app(self):
st.title('Model Visualization and Retrieval')
st.write('This is a gallery of images generated by the models')
prompt_tags, tag, prompt_id, items = self.sidebar()
# add safety check for some prompts
safety_check = True
unsafe_prompts = {}
# initialize unsafe prompts
for prompt_tag in prompt_tags:
unsafe_prompts[prompt_tag] = []
# manually add unsafe prompts
unsafe_prompts['world knowledge'] = [83]
# unsafe_prompts['art'] = [23]
unsafe_prompts['abstract'] = [1, 3]
# unsafe_prompts['food'] = [34]
if int(prompt_id.item()) in unsafe_prompts[tag]:
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'{prompt_id}')
if safety_check:
items, info, col_num = self.selection_panel(items)
if 'selected_dict' in st.session_state:
st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
dynamic_weight_panel = st.columns(len(dynamic_weight_options))
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
btn_disable = False
else:
btn_disable = True
for i in range(len(dynamic_weight_options)):
method = dynamic_weight_options[i]
with dynamic_weight_panel[i]:
btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))
with st.form(key=f'{prompt_id}'):
# buttons = st.columns([1, 1, 1])
buttons_space = st.columns([1, 1, 1, 1])
gallery_space = st.empty()
with buttons_space[0]:
continue_btn = st.form_submit_button('Confirm Selection', use_container_width=True, type='primary')
if continue_btn:
self.submit_actions('Continue', prompt_id)
with buttons_space[1]:
select_btn = st.form_submit_button('Select All', use_container_width=True)
if select_btn:
self.submit_actions('Select', prompt_id)
with buttons_space[2]:
deselect_btn = st.form_submit_button('Deselect All', use_container_width=True)
if deselect_btn:
self.submit_actions('Deselect', prompt_id)
with buttons_space[3]:
refresh_btn = st.form_submit_button('Refresh', on_click=gallery_space.empty, use_container_width=True)
with gallery_space.container():
with st.spinner('Loading images...'):
self.gallery_standard(items, col_num, info)
def submit_actions(self, status, prompt_id):
if status == 'Select':
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
print(st.session_state.selected_dict, 'select')
st.experimental_rerun()
elif status == 'Deselect':
st.session_state.selected_dict[prompt_id] = []
print(st.session_state.selected_dict, 'deselect')
st.experimental_rerun()
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
elif status == 'Continue':
st.session_state.selected_dict[prompt_id] = []
for key in st.session_state:
keys = key.split('_')
if keys[0] == 'select' and keys[1] == str(prompt_id):
if st.session_state[key]:
st.session_state.selected_dict[prompt_id].append(int(keys[2]))
# switch_page("ranking")
print(st.session_state.selected_dict, 'continue')
st.experimental_rerun()
def dynamic_weight(self, prompt_id, items, method='Grid Search'):
selected = items[
items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
optimal_weight = [0, 0, 0]
if method == 'Grid Search':
# grid search method
top_ranking = len(items) * len(selected)
for clip_weight in np.arange(-1, 1, 0.1):
for mcos_weight in np.arange(-1, 1, 0.1):
for pop_weight in np.arange(-1, 1, 0.1):
weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
# print('weight_all_sorted:', weight_all_sorted)
weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']
# get the index of values of weight_selected in weight_all_sorted
rankings = []
for weight in weight_selected:
rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
if sum(rankings) <= top_ranking:
top_ranking = sum(rankings)
print('current top ranking:', top_ranking, rankings)
optimal_weight = [clip_weight, mcos_weight, pop_weight]
print('optimal weight:', optimal_weight)
elif method == 'SVM':
# svm method
print('start svm method')
# get residual dataframe that contains models not selected
residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
residual = residual.to_numpy()
selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
selected = selected.to_numpy()
y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
X = np.concatenate((selected, residual), axis=0)
# fit svm model, and get parameters for the hyperplane
clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
clf.fit(X, y)
optimal_weight = clf.coef_[0].tolist()
print('optimal weight:', optimal_weight)
pass
elif method == 'Greedy':
for idx in selected.index:
# find which score is the highest, clip, mcos, or pop
clip_score = selected.loc[idx, 'norm_clip_crop']
mcos_score = selected.loc[idx, 'norm_mcos_crop']
pop_score = selected.loc[idx, 'norm_pop']
if clip_score >= mcos_score and clip_score >= pop_score:
optimal_weight[0] += 1
elif mcos_score >= clip_score and mcos_score >= pop_score:
optimal_weight[1] += 1
elif pop_score >= clip_score and pop_score >= mcos_score:
optimal_weight[2] += 1
# normalize optimal_weight
optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
print('optimal weight:', optimal_weight)
st.session_state.score_weights[0: 3] = optimal_weight
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
@st.cache_resource
def altair_histogram(hist_data, sort_by, mini, maxi):
brushed = alt.selection_interval(encodings=['x'], name="brushed")
chart = (
alt.Chart(hist_data)
.mark_bar(opacity=0.7, cornerRadius=2)
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
# .add_selection(brushed)
# .properties(width=800, height=300)
)
# Create a transparent rectangle for highlighting the range
highlight = (
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
.mark_rect(opacity=0.3)
.encode(x='x1', x2='x2')
# .properties(width=800, height=300)
)
# Layer the chart and the highlight rectangle
layered_chart = alt.layer(chart, highlight)
return layered_chart
@st.cache_data
def load_hf_dataset():
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
images_ds = None # set to None for now since we use s3 bucket to store images
# process dataset
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
return roster, promptBook, images_ds
if __name__ == "__main__":
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")
# remove ranking in the session state if it is created in Ranking.py
st.session_state.pop('ranking', None)
if 'user_id' not in st.session_state:
st.warning('Please log in first.')
home_btn = st.button('Go to Home Page')
if home_btn:
switch_page("home")
else:
st.write('You have already logged in as ' + st.session_state.user_id[0])
roster, promptBook, images_ds = load_hf_dataset()
# print(promptBook.columns)
# initialize selected_dict
if 'selected_dict' not in st.session_state:
st.session_state['selected_dict'] = {}
app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
app.app()
|