Spaces:
Sleeping
Sleeping
File size: 6,433 Bytes
bac893c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import streamlit as st
import torch
import pandas as pd
import numpy as np
import requests
from bokeh.plotting import figure, show
from bokeh.models import HoverTool, ColumnDataSource, CustomJSHover
from bokeh.embed import file_html
from bokeh.resources import CDN # Import CDN here
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from sklearn.manifold import TSNE
from tqdm import tqdm
@st.cache_data
def load_hf_dataset():
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
# process dataset
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
return roster, promptBook
def show_with_bokeh(data, streamlit=False):
# Extract x, y coordinates and image URLs
x_coords, y_coords, image_urls = zip(*data)
# Create a ColumnDataSource
source = ColumnDataSource(data=dict(x=x_coords, y=y_coords, image=image_urls))
# Create a figure
p = figure(width=800, height=600)
# Add scatter plot
scatter = p.scatter(x='x', y='y', size=20, source=source)
# Define hover tool
hover = HoverTool()
# hover.tooltips = """
# <div>
# <iframe src="@image" width="512" height="512"></iframe>
# </div>
# """
# hover.formatters = {'@image': CustomJSHover(code="""
# const index = cb_data.index;
# const url = cb_data.source.data['image'][index];
# return '<iframe src="' + url + '" width="512" height="512"></iframe>';
# """)}
hover.tooltips = """
<div>
<img src="@image" style='object-fit: contain'; height=100%">
</div>
"""
hover.formatters = {'@image': CustomJSHover(code="""
const index = cb_data.index;
const url = cb_data.source.data['image'][index];
return '<img src="' + url + '">';
""")}
p.add_tools(hover)
# Generate HTML with the plot
html = file_html(p, CDN, "Interactive Scatter Plot with Hover Images")
# Save the HTML file or show it
# with open("scatter_plot_with_hover_images.html", "w") as f:
# f.write(html)
if streamlit:
st.bokeh_chart(p, use_container_width=True)
else:
show(p)
def show_with_bokeh_2(data, image_size=[40, 40], streamlit=False):
# Extract x, y coordinates and image URLs
x_coords, y_coords, image_urls = zip(*data)
# Create a ColumnDataSource
source = ColumnDataSource(data=dict(x=x_coords, y=y_coords, image=image_urls))
# Create a figure
p = figure(width=800, height=600, aspect_ratio=1.0)
# Add image glyphs
# image_size = 40 # Adjust this size as needed
scale = 0.1
image_size = [int(image_size[0])*scale, int(image_size[1])*scale]
print(image_size)
p.image_url(url='image', x='x', y='y', source=source, w=image_size[0], h=image_size[1], anchor="center")
# Define hover tool
hover = HoverTool()
hover.tooltips = """
<div>
<img src="@image" style='object-fit: contain'; height=100%'">
</div>
"""
p.add_tools(hover)
# Generate HTML with the plot
html = file_html(p, CDN, "Scatter Plot with Images")
# Save the HTML file or show it
# with open("scatter_plot_with_images.html", "w") as f:
# f.write(html)
if streamlit:
st.bokeh_chart(p, use_container_width=True)
else:
show(p)
if __name__ == '__main__':
# load dataset
roster, promptBook = load_hf_dataset()
print('==> loading feats')
feats = {}
for pt in os.listdir('../data/feats'):
if pt.split('.')[-1] == 'pt' and pt.split('.')[0].isdigit():
feats[pt.split('.')[0]] = torch.load(os.path.join('../data/feats', pt))
print('==> applying t-SNE')
# apply t-SNE to entries in each feat in feats to get 2D coordinates
tsne = TSNE(n_components=2, random_state=0)
# for k, v in tqdm(feats.items()):
# feats[k]['tsne'] = tsne.fit_transform(v['all'].numpy())
prompt_id = '49'
feats[prompt_id]['tsne'] = tsne.fit_transform(feats[prompt_id]['all'].numpy())
print(feats[prompt_id]['tsne'])
keys = []
for k in feats[prompt_id].keys():
if k != 'all' and k != 'tsne':
keys.append(int(k.item()))
print(keys)
data = []
for idx in range(len(keys)):
modelVersion_id = keys[idx]
image_id = promptBook[(promptBook['modelVersion_id'] == modelVersion_id) & (promptBook['prompt_id'] == int(prompt_id))].reset_index(drop=True).loc[0, 'image_id']
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{image_id}.png"
scale = 50
data.append((feats[prompt_id]['tsne'][idx][0]*scale, feats[prompt_id]['tsne'][idx][1]*scale, image_url))
image_size = promptBook[(promptBook['image_id'] == image_id)].reset_index(drop=True).loc[0, 'size'].split('x')
# # Sample data: (x, y) coordinates and corresponding image URLs
# data = [
# (2, 5, "https://www.crunchyroll.com/imgsrv/display/thumbnail/480x720/catalog/crunchyroll/669dae5dbea3d93bb5f1012078501976.jpeg"),
# (4, 8, "https://i.pinimg.com/originals/40/6d/38/406d38957bc4fd12f34c5dfa3d73b86d.jpg"),
# (7, 3, "https://i.pinimg.com/550x/76/27/d2/7627d227adc6fb5fb6662ebfb9d82d7e.jpg"),
# # Add more data points and image URLs
# ]
# show_with_bokeh(data, streamlit=True)
show_with_bokeh_2(data, image_size=image_size, streamlit=True) |