GEMRec-Gallery / Archive /agraphTest.py
Ricercar's picture
testings for gallery 2.0
bac893c
raw
history blame
5.99 kB
import os
import streamlit as st
import torch
import pandas as pd
import numpy as np
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from streamlit_agraph import agraph, Node, Edge, Config
from sklearn.manifold import TSNE
@st.cache_data
def load_hf_dataset():
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
# process dataset
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
return roster, promptBook
@st.cache_data
def calc_tsne(prompt_id):
print('==> loading feats')
feats = {}
for pt in os.listdir('../data/feats'):
if pt.split('.')[-1] == 'pt' and pt.split('.')[0].isdigit():
feats[pt.split('.')[0]] = torch.load(os.path.join('../data/feats', pt))
print('==> applying t-SNE')
# apply t-SNE to entries in each feat in feats to get 2D coordinates
tsne = TSNE(n_components=2, random_state=0)
# for k, v in tqdm(feats.items()):
# feats[k]['tsne'] = tsne.fit_transform(v['all'].numpy())
# prompt_id = '90'
feats[prompt_id]['tsne'] = tsne.fit_transform(feats[prompt_id]['all'].numpy())
feats_df = pd.DataFrame(feats[prompt_id]['tsne'], columns=['x', 'y'])
feats_df['prompt_id'] = prompt_id
keys = []
for k in feats[prompt_id].keys():
if k != 'all' and k != 'tsne':
keys.append(int(k.item()))
feats_df['modelVersion_id'] = keys
return feats_df
# print(feats[prompt_id]['tsne'])
if __name__ == '__main__':
st.set_page_config(layout="wide")
# load dataset
roster, promptBook = load_hf_dataset()
# prompt_id = '20'
with st.sidebar:
st.write('## Select Prompt')
prompts = promptBook['prompt_id'].unique().tolist()
# sort prompts by prompt_id
prompts.sort()
prompt_id = st.selectbox('Select Prompt', prompts, index=0)
physics = st.checkbox('Enable Physics')
feats_df = calc_tsne(str(prompt_id))
# keys = []
# for k in feats[prompt_id].keys():
# if k != 'all' and k != 'tsne':
# keys.append(int(k.item()))
# print(keys)
data = []
for idx in feats_df.index:
modelVersion_id = feats_df.loc[idx, 'modelVersion_id']
image_id = promptBook[(promptBook['modelVersion_id'] == modelVersion_id) & (
promptBook['prompt_id'] == int(prompt_id))].reset_index(drop=True).loc[0, 'image_id']
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{image_id}.png"
scale = 50
data.append((feats_df.loc[idx, 'x'] * scale, feats_df.loc[idx, 'y'] * scale, image_url))
image_size = promptBook[(promptBook['image_id'] == image_id)].reset_index(drop=True).loc[0, 'size'].split('x')
nodes = []
edges = []
for d in data:
nodes.append( Node(id=d[2],
# label=str(items.loc[idx, 'model_name']),
size=20,
shape="image",
image=d[2],
x=[d[0]],
y=[d[1]],
fixed=False if physics else True,
color={'background': '#00000', 'border': '#ffffff'},
shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1},
# borderWidth=1,
# shapeProperties={'useBorderWithImage': True},
)
)
# nodes.append( Node(id="Spiderman",
# label="Peter Parker",
# size=25,
# shape="circularImage",
# image="http://marvel-force-chart.surge.sh/marvel_force_chart_img/top_spiderman.png")
# ) # includes **kwargs
# nodes.append( Node(id="Captain_Marvel",
# label="Carol Danvers",
# fixed=True,
# size=25,
# shape="circularImage",
# image="http://marvel-force-chart.surge.sh/marvel_force_chart_img/top_captainmarvel.png")
# )
# edges.append( Edge(source="Captain_Marvel",
# label="friend_of",
# target="Spiderman",
# length=200,
# # **kwargs
# )
# )
#
config = Config(width='100%',
height=800,
directed=True,
physics=physics,
hierarchical=False,
# **kwargs
)
cols = st.columns([3, 1], gap='large')
with cols[0]:
return_value = agraph(nodes=nodes,
edges=edges,
config=config)
# st.write(return_value)
with cols[1]:
try:
st.image(return_value, use_column_width=True)
except:
st.write('No image selected')