Spaces:
Sleeping
Sleeping
import json | |
import os | |
import requests | |
import altair as alt | |
import extra_streamlit_components as stx | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import streamlit.components.v1 as components | |
from bs4 import BeautifulSoup | |
from datasets import load_dataset, Dataset, load_from_disk | |
from huggingface_hub import login | |
from streamlit_agraph import agraph, Node, Edge, Config | |
from streamlit_extras.switch_page_button import switch_page | |
from streamlit_extras.tags import tagger_component | |
from streamlit_extras.no_default_selectbox import selectbox | |
from sklearn.svm import LinearSVC | |
class GalleryApp: | |
def __init__(self, promptBook, images_ds): | |
self.promptBook = promptBook | |
self.images_ds = images_ds | |
# init gallery state | |
if 'gallery_state' not in st.session_state: | |
st.session_state.gallery_state = 'graph' | |
# initialize selected_dict | |
if 'selected_dict' not in st.session_state: | |
st.session_state['selected_dict'] = {} | |
# clear up empty entries in seleted_dict | |
for prompt_id in list(st.session_state.selected_dict.keys()): | |
if len(st.session_state.selected_dict[prompt_id]) == 0: | |
st.session_state.selected_dict.pop(prompt_id) | |
if 'gallery_focus' not in st.session_state: | |
st.session_state.gallery_focus = {'tag': None, 'prompt': None} | |
def gallery_standard(self, items, col_num, info, show_checkbox=True): | |
rows = len(items) // col_num + 1 | |
containers = [st.container() for _ in range(rows)] | |
for idx in range(0, len(items), col_num): | |
row_idx = idx // col_num | |
with containers[row_idx]: | |
cols = st.columns(col_num) | |
for j in range(col_num): | |
if idx + j < len(items): | |
with cols[j]: | |
# show image | |
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image'] | |
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png" | |
st.image(image, use_column_width=True) | |
# handel checkbox information | |
prompt_id = items.iloc[idx + j]['prompt_id'] | |
modelVersion_id = items.iloc[idx + j]['modelVersion_id'] | |
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False | |
# st.write("Position: ", idx + j) | |
if show_checkbox: | |
# show checkbox | |
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init) | |
# show selected info | |
for key in info: | |
st.write(f"**{key}**: {items.iloc[idx + j][key]}") | |
def gallery_graph(self, items): | |
items = load_tsne_coordinates(items) | |
# sort items to be popularity from low to high, so that most popular ones will be on the top | |
items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True) | |
scale = 50 | |
items.loc[:, 'x'] = items['x'] * scale | |
items.loc[:, 'y'] = items['y'] * scale | |
nodes = [] | |
edges = [] | |
for idx in items.index: | |
# if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0): | |
# opacity = 0.2 | |
# else: | |
# opacity = 1.0 | |
nodes.append(Node(id=items.loc[idx, 'image_id'], | |
# label=str(items.loc[idx, 'model_name']), | |
title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}", | |
size=20, | |
shape='image', | |
image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png", | |
x=items.loc[idx, 'x'].item(), | |
y=items.loc[idx, 'y'].item(), | |
# fixed=True, | |
color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}}, | |
# opacity=opacity, | |
shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1}, | |
borderWidth=2, | |
shapeProperties={'useBorderWithImage': True}, | |
) | |
) | |
config = Config(width='100%', | |
height='600', | |
directed=True, | |
physics=False, | |
hierarchical=False, | |
interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False}, | |
# **kwargs | |
) | |
return agraph(nodes=nodes, | |
edges=edges, | |
config=config, | |
) | |
def sidebar(self, items, prompt_id, note): | |
with st.sidebar: | |
# show source | |
if isinstance(note, str): | |
if note.isdigit(): | |
st.caption(f"`Source: civitai`") | |
else: | |
st.caption(f"`Source: {note}`") | |
else: | |
st.caption("`Source: Parti-prompts`") | |
# show image metadata | |
image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed'] | |
for key in image_metadatas: | |
label = ' '.join(key.split('_')).capitalize() | |
st.write(f"**{label}**") | |
if items[key][0] == ' ': | |
st.write('`None`') | |
else: | |
st.caption(f"{items[key][0]}") | |
# for note as civitai image id, add civitai reference | |
if isinstance(note, str) and note.isdigit(): | |
try: | |
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**') | |
res = requests.get(f'https://civitai.com/images/{note}') | |
# st.write(res.text) | |
soup = BeautifulSoup(res.text, 'html.parser') | |
image_section = soup.find('div', {'class': 'mantine-12rlksp'}) | |
image_url = image_section.find('img')['src'] | |
st.image(image_url, use_column_width=True) | |
except: | |
pass | |
# return prompt_tags, tag, prompt_id, items | |
def text_coloring_add(self, tobe_colored:list, total_items, color_name='orange'): | |
if color_name in ['orange', 'red', 'green', 'blue', 'violet', 'yellow']: | |
colored = [f':{color_name}[{item}]' if item in tobe_colored else item for item in total_items] | |
else: | |
colored = [f'[{color_name}] {item}' if item in tobe_colored else item for item in total_items] | |
return colored | |
def text_coloring_remove(self, tobe_removed): | |
if isinstance(tobe_removed, str): | |
if tobe_removed.startswith(':'): | |
tobe_removed = tobe_removed.split('[')[-1][:-1] | |
elif tobe_removed.startswith('['): | |
tobe_removed = tobe_removed.split(']')[-1][1:] | |
return tobe_removed | |
def app(self): | |
# print(st.session_state.gallery_focus) | |
st.write('### Prompt-Model Retrieval') | |
with st.sidebar: | |
tagger_component('**Gallery State:**', [st.session_state.gallery_state.title()], color_name=['orange']) | |
# st.write('This is a gallery of images generated by the models') | |
# build the tabular view | |
prompt_tags = self.promptBook['tag'].unique() | |
# sort tags by alphabetical order | |
prompt_tags = np.sort(prompt_tags)[::1].tolist() | |
# set focus tag and prompt index if exists | |
if st.session_state.gallery_focus['tag'] is None: | |
tag_focus_idx = 5 | |
else: | |
tag_focus_idx = prompt_tags.index(st.session_state.gallery_focus['tag']) | |
# add coloring to tag based on selection | |
tags_tobe_colored = self.promptBook[self.promptBook['prompt_id'].isin(st.session_state.selected_dict.keys())]['tag'].unique() | |
# colored_prompt_tags = [f':orange[{tag}]' if tag in tags_tobe_colored else tag for tag in prompt_tags] | |
colored_prompt_tags = self.text_coloring_add(tags_tobe_colored, prompt_tags, color_name='orange') | |
# save tag to session state on change | |
tag = st.radio('Select a tag', colored_prompt_tags, index=tag_focus_idx, horizontal=True, key='tag', label_visibility='collapsed') | |
# remove coloring from tag | |
tag = self.text_coloring_remove(tag) | |
print('tag: ', tag) | |
# print('current state: ', st.session_state.gallery_state) | |
if st.session_state.gallery_state == 'graph': | |
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
prompts = np.sort(items['prompt'].unique())[::1].tolist() | |
# selt focus prompt index if exists | |
if st.session_state.gallery_focus['prompt'] is None or tag != st.session_state.gallery_focus['tag']: | |
prompt_focus_idx = 0 | |
else: | |
prompt_focus_idx = 1 + prompts.index(st.session_state.gallery_focus['prompt']) | |
# st.caption('Select a prompt') | |
subset_selector = st.columns([3, 1]) | |
with subset_selector[0]: | |
# add coloring to prompt based on selection | |
prompts_tobe_colored = self.promptBook[self.promptBook['prompt_id'].isin(st.session_state.selected_dict.keys())]['prompt'].unique() | |
colored_prompts = self.text_coloring_add(prompts_tobe_colored, prompts, color_name='✅') | |
selected_prompt = selectbox('Select prompt', colored_prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=prompt_focus_idx) | |
# remove coloring from prompt | |
selected_prompt = self.text_coloring_remove(selected_prompt) | |
print('selected_prompt: ', selected_prompt) | |
st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0 | |
if selected_prompt is None: | |
# st.markdown(':orange[Please select a prompt above👆]') | |
st.caption('Feel free to **navigate among tags and pages**! Your selection will be saved within one log-in session.') | |
with subset_selector[-1]: | |
st.button(':orange[👈 **Please select a prompt**]', disabled=True, use_container_width=True) | |
else: | |
items = items[items['prompt'] == selected_prompt].reset_index(drop=True) | |
prompt_id = items['prompt_id'].unique()[0] | |
note = items['note'].unique()[0] | |
# add safety check for some prompts | |
safety_check = True | |
# load unsafe prompts | |
unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r')) | |
for prompt_tag in prompt_tags: | |
if prompt_tag not in unsafe_prompts: | |
unsafe_prompts[prompt_tag] = [] | |
# # manually add unsafe prompts | |
# unsafe_prompts['world knowledge'] = [83] | |
# unsafe_prompts['abstract'] = [1, 3] | |
if int(prompt_id.item()) in unsafe_prompts[tag]: | |
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.') | |
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}') | |
# print('current state: ', st.session_state.gallery_state) | |
# | |
# if st.session_state.gallery_state == 'graph': | |
if safety_check: | |
self.graph_mode(prompt_id, items) | |
with subset_selector[-1]: | |
has_selection = False | |
try: | |
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0: | |
has_selection = True | |
except: | |
pass | |
if has_selection: | |
checkout = st.button('Check out selections ➡️', use_container_width=True, type='primary') | |
if checkout: | |
# add focus to session state | |
st.session_state.gallery_focus['tag'] = tag | |
st.session_state.gallery_focus['prompt'] = selected_prompt | |
st.session_state.gallery_state = 'check out' | |
# print(st.session_state.gallery_state) | |
st.experimental_rerun() | |
else: | |
st.button(':orange[👇 **Select images you like below**]', disabled=True, use_container_width=True) | |
try: | |
self.sidebar(items, prompt_id, note) | |
except: | |
pass | |
elif st.session_state.gallery_state == 'check out': | |
# select items under the current tag, while model_id in selected_dict keys with corresponding modelVersion_ids | |
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
temp_items = pd.DataFrame() | |
for prompt_id, selected_models in st.session_state.selected_dict.items(): | |
temp_items = pd.concat([temp_items, items[items['modelVersion_id'].isin(selected_models) & (items['prompt_id'] == prompt_id)]], axis=0) | |
items = temp_items.reset_index(drop=True) | |
self.checkout_mode(tag, items) | |
def graph_mode(self, prompt_id, items): | |
graph_cols = st.columns([3, 1]) | |
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", | |
# disabled=False, key=f'{prompt_id}') | |
# if prompt: | |
# switch_page("ranking") | |
with graph_cols[0]: | |
st.caption( | |
'Please **:red[click on and select]** as many images as you like! You will be able to compare them later in ranking stage.') | |
graph_space = st.empty() | |
with graph_space.container(): | |
return_value = self.gallery_graph(items) | |
with graph_cols[1]: | |
if return_value: | |
with st.form(key=f'{prompt_id}'): | |
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png" | |
st.image(image_url) | |
item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0] | |
modelVersion_id = item['modelVersion_id'] | |
# handle selection | |
if 'selected_dict' in st.session_state: | |
if item['prompt_id'] not in st.session_state.selected_dict: | |
st.session_state.selected_dict[item['prompt_id']] = [] | |
if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]: | |
checked = True | |
else: | |
checked = False | |
if checked: | |
# deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True) | |
deselect = st.form_submit_button('Deselect', use_container_width=True) | |
if deselect: | |
st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id']) | |
self.remove_ranking_states(item['prompt_id']) | |
st.experimental_rerun() | |
else: | |
# select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary') | |
select = st.form_submit_button('Select', use_container_width=True, type='primary') | |
if select: | |
st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id']) | |
self.remove_ranking_states(item['prompt_id']) | |
# add focus to session state | |
st.session_state.gallery_focus['tag'] = item['tag'] | |
st.session_state.gallery_focus['prompt'] = item['prompt'] | |
st.experimental_rerun() | |
# st.write(item) | |
infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score', | |
'nsfw_score'] | |
infos_df = item[infos] | |
# rename columns | |
infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'}) | |
st.table(infos_df) | |
else: | |
st.info('Please click on an image to show') | |
def checkout_mode(self, tag, items): | |
# st.write(items) | |
if len(items) > 0: | |
prompt_ids = items['prompt_id'].unique() | |
for i in range(len(prompt_ids)): | |
prompt_id = prompt_ids[i] | |
prompt = items[items['prompt_id'] == prompt_id]['prompt'].unique()[0] | |
# default_expand = True if st.session_state.gallery_focus['prompt'] == prompt else False | |
if tag == st.session_state.gallery_focus['tag'] and prompt == st.session_state.gallery_focus['prompt']: | |
default_expand = True | |
elif tag != st.session_state.gallery_focus['tag'] and i==0: | |
default_expand = True | |
else: | |
default_expand = False | |
with st.expander(f'**{prompt}**', expanded=default_expand): | |
# st.caption('select info to show') | |
checkout_panel = st.columns([5, 3]) | |
with checkout_panel[0]: | |
info = st.multiselect('Show Info', | |
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', | |
'total_score', 'model_download_count', 'clip_score', 'mcos_score', | |
'norm_nsfw'], | |
label_visibility='collapsed', key=f'info_{prompt_id}', placeholder='Select what infos to show') | |
with checkout_panel[-1]: | |
checkout_buttons = st.columns([1, 1, 1]) | |
with checkout_buttons[0]: | |
back = st.button('Back to 🖼️', key=f'checkout_back_{prompt_id}', use_container_width=True) | |
if back: | |
st.session_state.gallery_focus['tag'] = tag | |
st.session_state.gallery_focus['prompt'] = prompt | |
print(st.session_state.gallery_focus) | |
st.session_state.gallery_state = 'graph' | |
st.experimental_rerun() | |
with checkout_buttons[1]: | |
# init edit state | |
if 'edit_state' not in st.session_state: | |
st.session_state.edit_state = False | |
if not st.session_state.edit_state: | |
edit = st.button('Edit', key=f'checkout_edit_{prompt_id}', use_container_width=True) | |
if edit: | |
st.session_state.edit_state = True | |
st.experimental_rerun() | |
else: | |
done = st.button('Done', key=f'checkout_done_{prompt_id}', use_container_width=True) | |
if done: | |
st.session_state.selected_dict[prompt_id] = [] | |
for key in st.session_state: | |
# update selected_dict with edited selection | |
keys = key.split('_') | |
if keys[0] == 'select' and keys[1] == str(prompt_id): | |
if st.session_state[key]: | |
st.session_state.selected_dict[prompt_id].append(int(keys[2])) | |
st.session_state.edit_state = False | |
st.experimental_rerun() | |
with checkout_buttons[-1]: | |
proceed = st.button('Proceed ➡️', key=f'checkout_proceed_{prompt_id}', use_container_width=True, | |
type='primary', disabled=st.session_state.edit_state) | |
if proceed: | |
st.session_state.gallery_focus['tag'] = tag | |
st.session_state.gallery_focus['prompt'] = prompt | |
st.session_state.gallery_state = 'graph' | |
switch_page('ranking') | |
self.gallery_standard(items[items['prompt_id'] == prompt_id].reset_index(drop=True), 4, info, show_checkbox=st.session_state.edit_state) | |
else: | |
# with st.form(key=f'checkout_{tag}'): | |
st.info('No selection under this tag') | |
back = st.button('🖼️ Back to gallery and select something you like', key=f'checkout_{tag}', type='primary') | |
if back: | |
st.session_state.gallery_focus['tag'] = tag | |
st.session_state.gallery_focus['prompt'] = None | |
st.session_state.gallery_state = 'graph' | |
st.experimental_rerun() | |
def remove_ranking_states(self, prompt_id): | |
# for drag sort | |
try: | |
st.session_state.counter[prompt_id] = 0 | |
st.session_state.ranking[prompt_id] = {} | |
print('remove ranking states') | |
except: | |
print('no sort ranking states to remove') | |
# for battles | |
try: | |
st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1} | |
print('remove battles states') | |
except: | |
print('no battles states to remove') | |
# for page progress | |
try: | |
st.session_state.progress[prompt_id] = 'ranking' | |
print('reset page progress states') | |
except: | |
print('no page progress states to be reset') | |
def load_hf_dataset(show_NSFW=False): | |
# login to huggingface | |
login(token=os.environ.get("HF_TOKEN")) | |
# load from huggingface | |
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train')) | |
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train')) | |
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook')) | |
images_ds = None # set to None for now since we use s3 bucket to store images | |
# # process dataset | |
# roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', | |
# 'model_download_count']].drop_duplicates().reset_index(drop=True) | |
# add 'custom_score_weights' column to promptBook if not exist | |
if 'weighted_score_sum' not in promptBook.columns: | |
promptBook.loc[:, 'weighted_score_sum'] = 0 | |
# merge roster and promptbook | |
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']], | |
on=['model_id', 'modelVersion_id'], how='left') | |
# add column to record current row index | |
promptBook.loc[:, 'row_idx'] = promptBook.index | |
# apply a nsfw filter | |
if not show_NSFW: | |
promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True) | |
print('nsfw filter applied', len(promptBook)) | |
# add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop' | |
score_weights = [1.0, 0.8, 0.2] | |
promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4) | |
return roster, promptBook, images_ds | |
def load_tsne_coordinates(items): | |
# load tsne coordinates | |
tsne_df = pd.read_parquet('./data/feats_tsne.parquet') | |
# print(tsne_df['modelVersion_id'].dtype) | |
# print('before merge:', items) | |
items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left') | |
# print('after merge:', items) | |
return items | |
if __name__ == "__main__": | |
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide") | |
if 'user_id' not in st.session_state: | |
st.warning('Please log in first.') | |
home_btn = st.button('Go to Home Page') | |
if home_btn: | |
switch_page("home") | |
else: | |
roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW) | |
app = GalleryApp(promptBook=promptBook, images_ds=images_ds) | |
app.app() | |
with open('./css/style.css') as f: | |
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |