Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import random | |
import pandas as pd | |
import glob | |
import csv | |
from PIL import Image | |
from datasets import load_dataset, Dataset, load_from_disk | |
from huggingface_hub import login | |
import os | |
import datasets | |
import requests | |
from bs4 import BeautifulSoup | |
class GalleryApp: | |
def __init__(self, promptBook): | |
self.promptBook = promptBook | |
st.set_page_config(layout="wide") | |
def gallery(self, items, col_num, info): | |
cols = st.columns(col_num) | |
# # sort items by brisque score | |
# items = items.sort_values(by=['brisque'], ascending=True).reset_index(drop=True) | |
for idx in range(len(items)): | |
with cols[idx % col_num]: | |
image = st.session_state.images[items.iloc[idx]['row_idx'].item()]['image'] | |
st.image(image, | |
use_column_width=True, | |
) | |
# with st.expander('Similarity Info'): | |
# tab1, tab2 = st.tabs(['Most Similar', 'Least Similar']) | |
# with tab1: | |
# st.image(image, use_column_width=True) | |
# with tab2: | |
# st.image(image, use_column_width=True) | |
for key in info: | |
st.write(f"**{key}**: {items.iloc[idx][key]}") | |
def app(self): | |
st.title('Model Coffer Gallery') | |
st.write('This is a gallery of images generated by the models in the Model Coffer') | |
# metadata, images = st.columns([1, 3]) | |
# with images: | |
# prompt_tags = self.promptBook['tag'].unique() | |
# # sort tags by alphabetical order | |
# prompt_tags = np.sort(prompt_tags) | |
# | |
# selecters = st.columns(3) | |
# with selecters[0]: | |
# tag = st.selectbox('Select a tag', prompt_tags) | |
with st.sidebar: | |
prompt_tags = self.promptBook['tag'].unique() | |
# sort tags by alphabetical order | |
prompt_tags = np.sort(prompt_tags)[::-1] | |
tag = st.selectbox('Select a tag', prompt_tags) | |
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
original_prompts = np.sort(items['prompt'].unique())[::-1] | |
# remove the first four items in the prompt, which are mostly the same | |
if tag != 'abstract': | |
prompts = [', '.join(x.split(', ')[4:]) for x in original_prompts] | |
prompt = st.selectbox('Select prompt', prompts) | |
idx = prompts.index(prompt) | |
prompt_full = ', '.join(original_prompts[idx].split(', ')[:4]) + ', ' + prompt | |
else: | |
prompt_full = st.selectbox('Select prompt', original_prompts) | |
prompt_id = items[items['prompt'] == prompt_full]['prompt_id'].unique()[0] | |
items = items[items['prompt_id'] == prompt_id].reset_index(drop=True) | |
st.write('**Prompt ID**') | |
st.caption(f"{prompt_id}") | |
st.write('**Prompt**') | |
st.caption(f"{items['prompt'][0]}") | |
st.write('**Negative Prompt**') | |
st.caption(f"{items['negativePrompt'][0]}") | |
st.write('**Sampler**') | |
st.caption(f"{items['sampler'][0]}") | |
st.write('**cfgScale**') | |
st.caption(f"{items['cfgScale'][0]}") | |
st.write('**Size**') | |
st.caption(f"width: {items['size'][0].split('x')[0]}, height: {items['size'][0].split('x')[1]}") | |
st.write('**Seed**') | |
st.caption(f"{items['seed'][0]}") | |
# for tag as civitai, add civitai reference | |
if tag == 'civitai': | |
st.write('**Reference**') | |
res = requests.get(f'https://civitai.com/images', params={'post_id': prompt_id}) | |
st.write(res) | |
# image_url = res.json()['items'][0]['url'] | |
# st.image(image_url, use_column_width=True) | |
# with images: | |
selecters = st.columns([1, 1, 2]) | |
with selecters[0]: | |
# sort_by = st.selectbox('Sort by', items.columns[11: -1]) | |
sort_by = st.selectbox('Sort by', ['model_download_count', 'model_name', 'model_id', | |
'modelVersion_name', 'modelVersion_id']) | |
print(items.columns) | |
with selecters[1]: | |
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_by == 'clip_score' or sort_by == 'model_download_count' else 0) | |
if order == 'Ascending': | |
order = True | |
else: | |
order = False | |
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True) | |
with selecters[2]: | |
info = st.multiselect('Show Info', | |
['model_download_count', 'model_name', 'model_id', | |
'modelVersion_name', 'modelVersion_id'], | |
default=sort_by) | |
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num') | |
self.gallery(items, col_num, info) | |
if __name__ == '__main__': | |
login(token=os.environ.get("HF_TOKEN")) | |
if 'roster' not in st.session_state: | |
print('loading roster') | |
# st.session_state.roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train')) | |
st.session_state.roster = pd.DataFrame(load_from_disk(os.path.join(os.getcwd(), 'data', 'roster'))) | |
st.session_state.roster = st.session_state.roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', | |
'model_download_count']].drop_duplicates().reset_index(drop=True) | |
# add model download count from roster to promptbook dataframe | |
if 'promptBook' not in st.session_state: | |
print('loading promptBook') | |
st.session_state.promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train')) | |
st.session_state.images = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook')) | |
print(st.session_state.images) | |
print('images loaded') | |
# st.session_state.promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferPromptBook', split='train')) | |
st.session_state.promptBook = st.session_state.promptBook.merge(st.session_state.roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']], on=['model_id', 'modelVersion_id'], how='left') | |
# add column to record current row index | |
st.session_state.promptBook['row_idx'] = st.session_state.promptBook.index | |
print('promptBook loaded') | |
# print(st.session_state.promptBook) | |
check_roster_error = False | |
if check_roster_error: | |
# print all rows with the same model_id and modelVersion_id but different model_download_count in roster | |
print(st.session_state.roster[st.session_state.roster.duplicated(subset=['model_id', 'modelVersion_id'], keep=False)].sort_values(by=['model_id', 'modelVersion_id'])) | |
app = GalleryApp(promptBook=st.session_state.promptBook) | |
app.app() | |