Spaces:
Sleeping
Sleeping
new version! multiple pages!
Browse files- app.py โ Archive/app.py +19 -10
- Archive/test.py +26 -0
- README.md +1 -1
- data/download_script.py +7 -1
- pages/1_๐ผ๏ธ_Gallery.py +348 -0
- pages/2_๐๏ธ_Ranking.py +28 -0
- ๐ _Home.py +48 -0
app.py โ Archive/app.py
RENAMED
@@ -100,10 +100,10 @@ class GalleryApp:
|
|
100 |
|
101 |
st.image(image, use_column_width=True)
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
# st.write(idx+j)
|
109 |
# show selected info
|
@@ -294,8 +294,8 @@ class GalleryApp:
|
|
294 |
return items, info, col_num
|
295 |
|
296 |
def app(self):
|
297 |
-
st.title('Model
|
298 |
-
st.write('This is a gallery of images generated by the models
|
299 |
|
300 |
with st.sidebar:
|
301 |
prompt_tags = self.promptBook['tag'].unique()
|
@@ -367,7 +367,7 @@ class GalleryApp:
|
|
367 |
|
368 |
with st.form(key=f'{prompt_id}', clear_on_submit=True):
|
369 |
# buttons = st.columns([1, 1, 1])
|
370 |
-
buttons_space = st.
|
371 |
gallery_space = st.empty()
|
372 |
# with buttons[0]:
|
373 |
# submit = st.form_submit_button('Save selections', on_click=self.save_checked, use_container_width=True, type='primary')
|
@@ -379,8 +379,17 @@ class GalleryApp:
|
|
379 |
with gallery_space.container():
|
380 |
self.gallery_standard(items, col_num, info)
|
381 |
|
382 |
-
with buttons_space:
|
383 |
-
st.form_submit_button('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
|
386 |
def reset_current_prompt(self, prompt_id):
|
@@ -416,7 +425,7 @@ def load_hf_dataset():
|
|
416 |
# load from huggingface
|
417 |
roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
|
418 |
promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
|
419 |
-
images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
|
420 |
|
421 |
# process dataset
|
422 |
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
|
|
|
100 |
|
101 |
st.image(image, use_column_width=True)
|
102 |
|
103 |
+
# show checkbox
|
104 |
+
self.promptBook.loc[items.iloc[idx + j]['row_idx'].item(), 'checked'] = st.checkbox(
|
105 |
+
'Select', value=self.promptBook.loc[items.iloc[idx + j]['row_idx'].item(), 'checked'],
|
106 |
+
key=f'select_{idx + j}')
|
107 |
|
108 |
# st.write(idx+j)
|
109 |
# show selected info
|
|
|
294 |
return items, info, col_num
|
295 |
|
296 |
def app(self):
|
297 |
+
st.title('Model Visualization and Retrieval')
|
298 |
+
st.write('This is a gallery of images generated by the models')
|
299 |
|
300 |
with st.sidebar:
|
301 |
prompt_tags = self.promptBook['tag'].unique()
|
|
|
367 |
|
368 |
with st.form(key=f'{prompt_id}', clear_on_submit=True):
|
369 |
# buttons = st.columns([1, 1, 1])
|
370 |
+
buttons_space = st.columns([1, 1, 1, 1])
|
371 |
gallery_space = st.empty()
|
372 |
# with buttons[0]:
|
373 |
# submit = st.form_submit_button('Save selections', on_click=self.save_checked, use_container_width=True, type='primary')
|
|
|
379 |
with gallery_space.container():
|
380 |
self.gallery_standard(items, col_num, info)
|
381 |
|
382 |
+
with buttons_space[0]:
|
383 |
+
st.form_submit_button('Confirm and Continue', use_container_width=True, type='primary')
|
384 |
+
|
385 |
+
with buttons_space[1]:
|
386 |
+
st.form_submit_button('Select All', use_container_width=True)
|
387 |
+
|
388 |
+
with buttons_space[2]:
|
389 |
+
st.form_submit_button('Deselect All', use_container_width=True)
|
390 |
+
|
391 |
+
with buttons_space[3]:
|
392 |
+
st.form_submit_button('Refresh', on_click=gallery_space.empty, use_container_width=True)
|
393 |
|
394 |
|
395 |
def reset_current_prompt(self, prompt_id):
|
|
|
425 |
# load from huggingface
|
426 |
roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
|
427 |
promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
|
428 |
+
images_ds = load_from_disk(os.path.join(os.getcwd(), '../data', 'promptbook'))
|
429 |
|
430 |
# process dataset
|
431 |
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
|
Archive/test.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
if __name__ == "__main__":
|
4 |
+
if 'check_dict' not in st.session_state:
|
5 |
+
st.session_state.check_dict = {'check1': False, 'check2': False, 'check3': False}
|
6 |
+
|
7 |
+
with st.form('my_form'):
|
8 |
+
st.session_state.check_dict['check1'] = st.checkbox('Check 1 out')
|
9 |
+
st.session_state.check_dict['check2'] = st.checkbox('Check 2 out')
|
10 |
+
st.session_state.check_dict['check3'] = st.checkbox('Check 3 out')
|
11 |
+
|
12 |
+
check21 = st.checkbox('Check 21 out')
|
13 |
+
if check21:
|
14 |
+
st.write('check21 is checked')
|
15 |
+
check22 = st.checkbox('Check 22 out')
|
16 |
+
if check22:
|
17 |
+
st.write('check22 is checked')
|
18 |
+
check23 = st.checkbox('Check 23 out')
|
19 |
+
if check23:
|
20 |
+
st.write('check23 is checked')
|
21 |
+
|
22 |
+
# Every form must have a submit button.
|
23 |
+
submitted = st.form_submit_button('Submit')
|
24 |
+
|
25 |
+
for key, value in st.session_state.check_dict.items():
|
26 |
+
st.write(key, value)
|
README.md
CHANGED
@@ -6,7 +6,7 @@ colorTo: purple
|
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.19.0
|
8 |
python_version: 3.9.13
|
9 |
-
app_file:
|
10 |
pinned: false
|
11 |
---
|
12 |
|
|
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.19.0
|
8 |
python_version: 3.9.13
|
9 |
+
app_file: ๐ _Home.py
|
10 |
pinned: false
|
11 |
---
|
12 |
|
data/download_script.py
CHANGED
@@ -20,5 +20,11 @@ def test():
|
|
20 |
print(promptbook[0]['image'])
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if __name__ == '__main__':
|
24 |
-
main()
|
|
|
20 |
print(promptbook[0]['image'])
|
21 |
|
22 |
|
23 |
+
# def drop_metadata_checked_column():
|
24 |
+
# ModelCofferMetadata = load_dataset('NYUSHPRP/ModelCofferMetadata', split='train')
|
25 |
+
# ModelCofferMetadata = ModelCofferMetadata.remove_columns(['checked'])
|
26 |
+
# ModelCofferMetadata.push_to_hub('NYUSHPRP/ModelCofferMetadata', split='train')
|
27 |
+
|
28 |
+
|
29 |
if __name__ == '__main__':
|
30 |
+
main()
|
pages/1_๐ผ๏ธ_Gallery.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import glob
|
5 |
+
from datasets import load_dataset, Dataset, load_from_disk
|
6 |
+
from huggingface_hub import login
|
7 |
+
import os
|
8 |
+
import requests
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import altair as alt
|
11 |
+
from streamlit_extras.switch_page_button import switch_page
|
12 |
+
|
13 |
+
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'avg_rank', 'pop': 'model_download_count'}
|
14 |
+
|
15 |
+
|
16 |
+
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
|
17 |
+
@st.cache_resource
|
18 |
+
def altair_histogram(hist_data, sort_by, mini, maxi):
|
19 |
+
brushed = alt.selection_interval(encodings=['x'], name="brushed")
|
20 |
+
|
21 |
+
chart = (
|
22 |
+
alt.Chart(hist_data)
|
23 |
+
.mark_bar(opacity=0.7, cornerRadius=2)
|
24 |
+
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
|
25 |
+
# .add_selection(brushed)
|
26 |
+
# .properties(width=800, height=300)
|
27 |
+
)
|
28 |
+
|
29 |
+
# Create a transparent rectangle for highlighting the range
|
30 |
+
highlight = (
|
31 |
+
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
|
32 |
+
.mark_rect(opacity=0.3)
|
33 |
+
.encode(x='x1', x2='x2')
|
34 |
+
# .properties(width=800, height=300)
|
35 |
+
)
|
36 |
+
|
37 |
+
# Layer the chart and the highlight rectangle
|
38 |
+
layered_chart = alt.layer(chart, highlight)
|
39 |
+
|
40 |
+
return layered_chart
|
41 |
+
|
42 |
+
|
43 |
+
class GalleryApp:
|
44 |
+
def __init__(self, promptBook, images_ds):
|
45 |
+
self.promptBook = promptBook
|
46 |
+
self.images_ds = images_ds
|
47 |
+
|
48 |
+
def gallery_standard(self, items, col_num, info):
|
49 |
+
rows = len(items) // col_num + 1
|
50 |
+
containers = [st.container() for _ in range(rows)]
|
51 |
+
for idx in range(0, len(items), col_num):
|
52 |
+
row_idx = idx // col_num
|
53 |
+
with containers[row_idx]:
|
54 |
+
cols = st.columns(col_num)
|
55 |
+
for j in range(col_num):
|
56 |
+
if idx + j < len(items):
|
57 |
+
with cols[j]:
|
58 |
+
# show image
|
59 |
+
image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
|
60 |
+
st.image(image, use_column_width=True)
|
61 |
+
|
62 |
+
# handel checkbox information
|
63 |
+
prompt_id = items.iloc[idx + j]['prompt_id']
|
64 |
+
modelVersion_id = items.iloc[idx + j]['modelVersion_id']
|
65 |
+
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False
|
66 |
+
|
67 |
+
# show checkbox
|
68 |
+
checked = st.checkbox('Select', key=f'select_{idx + j}', value=check_init)
|
69 |
+
if checked:
|
70 |
+
st.session_state.selected_dict[prompt_id] = st.session_state.selected_dict.get(prompt_id, []) + [modelVersion_id]
|
71 |
+
else:
|
72 |
+
try:
|
73 |
+
st.session_state.selected_dict[prompt_id].remove(modelVersion_id)
|
74 |
+
except:
|
75 |
+
pass
|
76 |
+
|
77 |
+
# show selected info
|
78 |
+
for key in info:
|
79 |
+
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
|
80 |
+
|
81 |
+
def selection_panel(self, items):
|
82 |
+
selecters = st.columns([1, 4])
|
83 |
+
|
84 |
+
# select sort type
|
85 |
+
with selecters[0]:
|
86 |
+
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
|
87 |
+
if sort_type == 'Scores':
|
88 |
+
sort_by = 'weighted_score_sum'
|
89 |
+
|
90 |
+
# select other options
|
91 |
+
with selecters[1]:
|
92 |
+
if sort_type == 'IDs and Names':
|
93 |
+
sub_selecters = st.columns([3, 1])
|
94 |
+
# select sort by
|
95 |
+
with sub_selecters[0]:
|
96 |
+
sort_by = st.selectbox('Sort by',
|
97 |
+
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id'],
|
98 |
+
label_visibility='hidden')
|
99 |
+
|
100 |
+
continue_idx = 1
|
101 |
+
|
102 |
+
else:
|
103 |
+
# add custom weights
|
104 |
+
sub_selecters = st.columns([1, 1, 1, 1])
|
105 |
+
|
106 |
+
if 'score_weights' not in st.session_state:
|
107 |
+
st.session_state.score_weights = [1.0, 0.8, 0.2, 0.84]
|
108 |
+
|
109 |
+
with sub_selecters[0]:
|
110 |
+
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[0], step=0.1, help='the weight for normalized clip score')
|
111 |
+
with sub_selecters[1]:
|
112 |
+
rank_weight = st.number_input('Distinctiveness Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[1], step=0.1, help='the weight for average rank')
|
113 |
+
with sub_selecters[2]:
|
114 |
+
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[2], step=0.1, help='the weight for normalized popularity score')
|
115 |
+
|
116 |
+
items.loc[:, 'weighted_score_sum'] = round(items['norm_clip'] * clip_weight + items['avg_rank'] * rank_weight + items[
|
117 |
+
'norm_pop'] * pop_weight, 4)
|
118 |
+
|
119 |
+
continue_idx = 3
|
120 |
+
|
121 |
+
# select threshold
|
122 |
+
with sub_selecters[continue_idx]:
|
123 |
+
dist_threshold = st.number_input('Distinctiveness Threshold', min_value=0.0, max_value=1.0, value=st.session_state.score_weights[3], step=0.01, help='Only show models with distinctiveness score lower than this threshold, set 1.0 to show all images')
|
124 |
+
items = items[items['avg_rank'] < dist_threshold].reset_index(drop=True)
|
125 |
+
|
126 |
+
# save latest weights
|
127 |
+
st.session_state.score_weights = [clip_weight, rank_weight, pop_weight, dist_threshold]
|
128 |
+
|
129 |
+
# draw a distribution histogram
|
130 |
+
if sort_type == 'Scores':
|
131 |
+
try:
|
132 |
+
with st.expander('Show score distribution histogram and select score range'):
|
133 |
+
st.write('**Score distribution histogram**')
|
134 |
+
chart_space = st.container()
|
135 |
+
# st.write('Select the range of scores to show')
|
136 |
+
hist_data = pd.DataFrame(items[sort_by])
|
137 |
+
mini = hist_data[sort_by].min().item()
|
138 |
+
mini = mini//0.1 * 0.1
|
139 |
+
maxi = hist_data[sort_by].max().item()
|
140 |
+
maxi = maxi//0.1 * 0.1 + 0.1
|
141 |
+
st.write('**Select the range of scores to show**')
|
142 |
+
r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
|
143 |
+
with chart_space:
|
144 |
+
st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
|
145 |
+
# event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
|
146 |
+
# r = event_dict.get(sort_by)
|
147 |
+
if r:
|
148 |
+
items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
|
149 |
+
# st.write(r)
|
150 |
+
except:
|
151 |
+
pass
|
152 |
+
|
153 |
+
display_options = st.columns([1, 4])
|
154 |
+
|
155 |
+
with display_options[0]:
|
156 |
+
# select order
|
157 |
+
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
|
158 |
+
if order == 'Ascending':
|
159 |
+
order = True
|
160 |
+
else:
|
161 |
+
order = False
|
162 |
+
|
163 |
+
with display_options[1]:
|
164 |
+
|
165 |
+
# select info to show
|
166 |
+
info = st.multiselect('Show Info',
|
167 |
+
['model_download_count', 'clip_score', 'avg_rank', 'model_name', 'model_id',
|
168 |
+
'modelVersion_name', 'modelVersion_id', 'clip+rank', 'clip+pop', 'rank+pop',
|
169 |
+
'clip+rank+pop', 'weighted_score_sum'],
|
170 |
+
default=sort_by)
|
171 |
+
|
172 |
+
# apply sorting to dataframe
|
173 |
+
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
|
174 |
+
|
175 |
+
# select number of columns
|
176 |
+
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
|
177 |
+
|
178 |
+
return items, info, col_num
|
179 |
+
|
180 |
+
def sidebar(self):
|
181 |
+
with st.sidebar:
|
182 |
+
prompt_tags = self.promptBook['tag'].unique()
|
183 |
+
# sort tags by alphabetical order
|
184 |
+
prompt_tags = np.sort(prompt_tags)[::-1]
|
185 |
+
|
186 |
+
tag = st.selectbox('Select a tag', prompt_tags)
|
187 |
+
|
188 |
+
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
|
189 |
+
|
190 |
+
original_prompts = np.sort(items['prompt'].unique())[::-1]
|
191 |
+
|
192 |
+
# remove the first four items in the prompt, which are mostly the same
|
193 |
+
if tag != 'abstract':
|
194 |
+
prompts = [', '.join(x.split(', ')[4:]) for x in original_prompts]
|
195 |
+
prompt = st.selectbox('Select prompt', prompts)
|
196 |
+
|
197 |
+
idx = prompts.index(prompt)
|
198 |
+
prompt_full = ', '.join(original_prompts[idx].split(', ')[:4]) + ', ' + prompt
|
199 |
+
else:
|
200 |
+
prompt_full = st.selectbox('Select prompt', original_prompts)
|
201 |
+
|
202 |
+
items = items[items['prompt'] == prompt_full].reset_index(drop=True)
|
203 |
+
prompt_id = items['prompt_id'].unique()[0]
|
204 |
+
|
205 |
+
# show image metadata
|
206 |
+
image_metadatas = ['prompt_id', 'prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
|
207 |
+
for key in image_metadatas:
|
208 |
+
label = ' '.join(key.split('_')).capitalize()
|
209 |
+
st.write(f"**{label}**")
|
210 |
+
if items[key][0] == ' ':
|
211 |
+
st.write('`None`')
|
212 |
+
else:
|
213 |
+
st.caption(f"{items[key][0]}")
|
214 |
+
|
215 |
+
# for tag as civitai, add civitai reference
|
216 |
+
if tag == 'civitai':
|
217 |
+
try:
|
218 |
+
st.write('**Civitai Reference**')
|
219 |
+
res = requests.get(f'https://civitai.com/images/{prompt_id.item()}')
|
220 |
+
# st.write(res.text)
|
221 |
+
soup = BeautifulSoup(res.text, 'html.parser')
|
222 |
+
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
|
223 |
+
image_url = image_section.find('img')['src']
|
224 |
+
st.image(image_url, use_column_width=True)
|
225 |
+
except:
|
226 |
+
pass
|
227 |
+
|
228 |
+
return prompt_tags, tag, prompt_id, items
|
229 |
+
|
230 |
+
def app(self):
|
231 |
+
st.title('Model Visualization and Retrieval')
|
232 |
+
st.write('This is a gallery of images generated by the models')
|
233 |
+
|
234 |
+
prompt_tags, tag, prompt_id, items = self.sidebar()
|
235 |
+
|
236 |
+
# add safety check for some prompts
|
237 |
+
safety_check = True
|
238 |
+
unsafe_prompts = {}
|
239 |
+
# initialize unsafe prompts
|
240 |
+
for prompt_tag in prompt_tags:
|
241 |
+
unsafe_prompts[prompt_tag] = []
|
242 |
+
# manually add unsafe prompts
|
243 |
+
unsafe_prompts['civitai'] = [375790, 366222, 295008, 256477]
|
244 |
+
unsafe_prompts['people'] = [53]
|
245 |
+
unsafe_prompts['art'] = [23]
|
246 |
+
unsafe_prompts['abstract'] = [10, 12]
|
247 |
+
unsafe_prompts['food'] = [34]
|
248 |
+
|
249 |
+
if int(prompt_id.item()) in unsafe_prompts[tag]:
|
250 |
+
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
|
251 |
+
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'{prompt_id}')
|
252 |
+
|
253 |
+
if safety_check:
|
254 |
+
items, info, col_num = self.selection_panel(items)
|
255 |
+
# self.gallery_standard(items, col_num, info)
|
256 |
+
|
257 |
+
with st.form(key=f'{prompt_id}'):
|
258 |
+
# buttons = st.columns([1, 1, 1])
|
259 |
+
buttons_space = st.columns([1, 1, 1, 1])
|
260 |
+
gallery_space = st.empty()
|
261 |
+
|
262 |
+
with buttons_space[0]:
|
263 |
+
continue_btn = st.form_submit_button('Confirm Selection', use_container_width=True, type='primary')
|
264 |
+
if continue_btn:
|
265 |
+
self.submit_actions('Continue', prompt_id)
|
266 |
+
|
267 |
+
with buttons_space[1]:
|
268 |
+
select_btn = st.form_submit_button('Select All', use_container_width=True)
|
269 |
+
if select_btn:
|
270 |
+
self.submit_actions('Select', prompt_id)
|
271 |
+
|
272 |
+
with buttons_space[2]:
|
273 |
+
deselect_btn = st.form_submit_button('Deselect All', use_container_width=True)
|
274 |
+
if deselect_btn:
|
275 |
+
self.submit_actions('Deselect', prompt_id)
|
276 |
+
|
277 |
+
with buttons_space[3]:
|
278 |
+
refresh_btn = st.form_submit_button('Refresh', on_click=gallery_space.empty, use_container_width=True)
|
279 |
+
|
280 |
+
with gallery_space.container():
|
281 |
+
with st.spinner('Loading images...'):
|
282 |
+
self.gallery_standard(items, col_num, info)
|
283 |
+
|
284 |
+
def submit_actions(self, status, prompt_id):
|
285 |
+
if status == 'Select':
|
286 |
+
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
|
287 |
+
st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
|
288 |
+
print(st.session_state.selected_dict, 'select')
|
289 |
+
elif status == 'Deselect':
|
290 |
+
st.session_state.selected_dict[prompt_id] = []
|
291 |
+
print(st.session_state.selected_dict, 'deselect')
|
292 |
+
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
|
293 |
+
pass
|
294 |
+
elif status == 'Continue':
|
295 |
+
# switch_page("ranking")
|
296 |
+
pass
|
297 |
+
|
298 |
+
|
299 |
+
@st.cache_data
|
300 |
+
def load_hf_dataset():
|
301 |
+
# login to huggingface
|
302 |
+
login(token=os.environ.get("HF_TOKEN"))
|
303 |
+
|
304 |
+
# load from huggingface
|
305 |
+
roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
|
306 |
+
promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
|
307 |
+
images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
|
308 |
+
|
309 |
+
# process dataset
|
310 |
+
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
|
311 |
+
'model_download_count']].drop_duplicates().reset_index(drop=True)
|
312 |
+
|
313 |
+
# # add 'checked' column to promptBook if not exist
|
314 |
+
# if 'checked' not in promptBook.columns:
|
315 |
+
# promptBook.loc[:, 'checked'] = False
|
316 |
+
|
317 |
+
# add 'custom_score_weights' column to promptBook if not exist
|
318 |
+
if 'weighted_score_sum' not in promptBook.columns:
|
319 |
+
promptBook.loc[:, 'weighted_score_sum'] = 0
|
320 |
+
|
321 |
+
# merge roster and promptbook
|
322 |
+
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
|
323 |
+
on=['model_id', 'modelVersion_id'], how='left')
|
324 |
+
|
325 |
+
# add column to record current row index
|
326 |
+
promptBook.loc[:, 'row_idx'] = promptBook.index
|
327 |
+
|
328 |
+
return roster, promptBook, images_ds
|
329 |
+
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
st.set_page_config(page_title="Model Coffer Gallery", page_icon="๐ผ๏ธ", layout="wide")
|
333 |
+
if 'user_id' not in st.session_state:
|
334 |
+
st.warning('Please log in first.')
|
335 |
+
home_btn = st.button('Go to Home Page')
|
336 |
+
if home_btn:
|
337 |
+
switch_page("home")
|
338 |
+
else:
|
339 |
+
st.write('You have already logged in as ' + st.session_state.user_id[0])
|
340 |
+
roster, promptBook, st.session_state["images_ds"] = load_hf_dataset()
|
341 |
+
# print(promptBook.columns)
|
342 |
+
|
343 |
+
# initialize selected_dict
|
344 |
+
if 'selected_dict' not in st.session_state:
|
345 |
+
st.session_state['selected_dict'] = {}
|
346 |
+
|
347 |
+
app = GalleryApp(promptBook=promptBook, images_ds=st.session_state.images_ds)
|
348 |
+
app.app()
|
pages/2_๐๏ธ_Ranking.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from streamlit_extras.switch_page_button import switch_page
|
5 |
+
|
6 |
+
if __name__ == "__main__":
|
7 |
+
st.set_page_config(page_title="Personal Image Ranking", page_icon="๐๏ธ๏ธ", layout="wide")
|
8 |
+
|
9 |
+
if 'user_id' not in st.session_state:
|
10 |
+
st.warning('Please log in first.')
|
11 |
+
home_btn = st.button('Go to Home Page')
|
12 |
+
if home_btn:
|
13 |
+
switch_page("home")
|
14 |
+
|
15 |
+
else:
|
16 |
+
all_checked = 0
|
17 |
+
for key, value in st.session_state.selected_dict.items():
|
18 |
+
for v in value:
|
19 |
+
all_checked += 1
|
20 |
+
|
21 |
+
if all_checked == 0:
|
22 |
+
st.info('You have not checked any image yet. Please go back to the gallery page and check some images.')
|
23 |
+
gallery_btn = st.button('Go to Gallery')
|
24 |
+
if gallery_btn:
|
25 |
+
switch_page('gallery')
|
26 |
+
else:
|
27 |
+
st.write('You have checked ' + str(all_checked) + ' images.')
|
28 |
+
|
๐ _Home.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
from streamlit_extras.switch_page_button import switch_page
|
5 |
+
|
6 |
+
|
7 |
+
def login():
|
8 |
+
# skip customize user name for debug mode
|
9 |
+
|
10 |
+
with st.form("user_login"):
|
11 |
+
st.write('## Enter Your Name')
|
12 |
+
user_id = st.text_input(
|
13 |
+
"Enter your name for personalization ๐",
|
14 |
+
label_visibility='visible',
|
15 |
+
disabled=False,
|
16 |
+
placeholder='anonymous',
|
17 |
+
)
|
18 |
+
st.write('You can leave it blank to be anonymous.')
|
19 |
+
|
20 |
+
# Every form must have a submit button.
|
21 |
+
submitted = st.form_submit_button("Start")
|
22 |
+
if submitted:
|
23 |
+
save_user_id(user_id)
|
24 |
+
switch_page("gallery")
|
25 |
+
|
26 |
+
|
27 |
+
def save_user_id(user_id):
|
28 |
+
print(user_id)
|
29 |
+
if not user_id:
|
30 |
+
user_id = 'anonymous' + str(random.randint(0, 100000))
|
31 |
+
st.session_state.user_id = [user_id, time.time()]
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
st.set_page_config(page_title="Login", page_icon="๐ ")
|
36 |
+
|
37 |
+
st.title("Personalized Image Ranking")
|
38 |
+
st.write(
|
39 |
+
"This is an web application to collect personal preference to ai generated images. \
|
40 |
+
You can know which model you like most after you finish the survey."
|
41 |
+
)
|
42 |
+
|
43 |
+
if 'user_id' not in st.session_state:
|
44 |
+
login()
|
45 |
+
else:
|
46 |
+
st.write('You have already logged in as ' + st.session_state.user_id[0])
|
47 |
+
st.button('Log out', on_click=lambda: st.session_state.pop('user_id'))
|
48 |
+
|