Spaces:
Sleeping
Sleeping
add new backup
Browse files- Archive/Gallery_beta0920.py +718 -0
Archive/Gallery_beta0920.py
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
|
5 |
+
import altair as alt
|
6 |
+
import extra_streamlit_components as stx
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import streamlit as st
|
10 |
+
import streamlit.components.v1 as components
|
11 |
+
|
12 |
+
from bs4 import BeautifulSoup
|
13 |
+
from datasets import load_dataset, Dataset, load_from_disk
|
14 |
+
from huggingface_hub import login
|
15 |
+
from streamlit_agraph import agraph, Node, Edge, Config
|
16 |
+
from streamlit_extras.switch_page_button import switch_page
|
17 |
+
from streamlit_extras.no_default_selectbox import selectbox
|
18 |
+
from sklearn.svm import LinearSVC
|
19 |
+
|
20 |
+
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}
|
21 |
+
|
22 |
+
|
23 |
+
class GalleryApp:
|
24 |
+
def __init__(self, promptBook, images_ds):
|
25 |
+
self.promptBook = promptBook
|
26 |
+
self.images_ds = images_ds
|
27 |
+
|
28 |
+
# init gallery state
|
29 |
+
if 'gallery_state' not in st.session_state:
|
30 |
+
st.session_state.gallery_state = {}
|
31 |
+
|
32 |
+
# initialize selected_dict
|
33 |
+
if 'selected_dict' not in st.session_state:
|
34 |
+
st.session_state['selected_dict'] = {}
|
35 |
+
|
36 |
+
if 'gallery_focus' not in st.session_state:
|
37 |
+
st.session_state.gallery_focus = {'tag': None, 'prompt': None}
|
38 |
+
|
39 |
+
def gallery_standard(self, items, col_num, info):
|
40 |
+
rows = len(items) // col_num + 1
|
41 |
+
containers = [st.container() for _ in range(rows)]
|
42 |
+
for idx in range(0, len(items), col_num):
|
43 |
+
row_idx = idx // col_num
|
44 |
+
with containers[row_idx]:
|
45 |
+
cols = st.columns(col_num)
|
46 |
+
for j in range(col_num):
|
47 |
+
if idx + j < len(items):
|
48 |
+
with cols[j]:
|
49 |
+
# show image
|
50 |
+
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
|
51 |
+
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
|
52 |
+
st.image(image, use_column_width=True)
|
53 |
+
|
54 |
+
# handel checkbox information
|
55 |
+
prompt_id = items.iloc[idx + j]['prompt_id']
|
56 |
+
modelVersion_id = items.iloc[idx + j]['modelVersion_id']
|
57 |
+
|
58 |
+
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False
|
59 |
+
|
60 |
+
# st.write("Position: ", idx + j)
|
61 |
+
|
62 |
+
# show checkbox
|
63 |
+
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)
|
64 |
+
|
65 |
+
# show selected info
|
66 |
+
for key in info:
|
67 |
+
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
|
68 |
+
|
69 |
+
def gallery_graph(self, items):
|
70 |
+
items = load_tsne_coordinates(items)
|
71 |
+
|
72 |
+
# sort items to be popularity from low to high, so that most popular ones will be on the top
|
73 |
+
items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True)
|
74 |
+
|
75 |
+
scale = 50
|
76 |
+
items.loc[:, 'x'] = items['x'] * scale
|
77 |
+
items.loc[:, 'y'] = items['y'] * scale
|
78 |
+
|
79 |
+
nodes = []
|
80 |
+
edges = []
|
81 |
+
|
82 |
+
for idx in items.index:
|
83 |
+
# if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0):
|
84 |
+
# opacity = 0.2
|
85 |
+
# else:
|
86 |
+
# opacity = 1.0
|
87 |
+
|
88 |
+
nodes.append(Node(id=items.loc[idx, 'image_id'],
|
89 |
+
# label=str(items.loc[idx, 'model_name']),
|
90 |
+
title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}",
|
91 |
+
size=20,
|
92 |
+
shape='image',
|
93 |
+
image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png",
|
94 |
+
x=items.loc[idx, 'x'].item(),
|
95 |
+
y=items.loc[idx, 'y'].item(),
|
96 |
+
# fixed=True,
|
97 |
+
color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}},
|
98 |
+
# opacity=opacity,
|
99 |
+
shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1},
|
100 |
+
borderWidth=2,
|
101 |
+
shapeProperties={'useBorderWithImage': True},
|
102 |
+
)
|
103 |
+
)
|
104 |
+
|
105 |
+
config = Config(width='100%',
|
106 |
+
height='600',
|
107 |
+
directed=True,
|
108 |
+
physics=False,
|
109 |
+
hierarchical=False,
|
110 |
+
interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False},
|
111 |
+
# **kwargs
|
112 |
+
)
|
113 |
+
|
114 |
+
return agraph(nodes=nodes,
|
115 |
+
edges=edges,
|
116 |
+
config=config,
|
117 |
+
)
|
118 |
+
|
119 |
+
def selection_panel(self, items):
|
120 |
+
# temperal function
|
121 |
+
|
122 |
+
selecters = st.columns([1, 4])
|
123 |
+
|
124 |
+
if 'score_weights' not in st.session_state:
|
125 |
+
# st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]
|
126 |
+
st.session_state.score_weights = [1.0, 0.8, 0.2]
|
127 |
+
|
128 |
+
# select sort type
|
129 |
+
with selecters[0]:
|
130 |
+
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
|
131 |
+
if sort_type == 'Scores':
|
132 |
+
sort_by = 'weighted_score_sum'
|
133 |
+
|
134 |
+
# select other options
|
135 |
+
with selecters[1]:
|
136 |
+
if sort_type == 'IDs and Names':
|
137 |
+
sub_selecters = st.columns([3])
|
138 |
+
# select sort by
|
139 |
+
with sub_selecters[0]:
|
140 |
+
sort_by = st.selectbox('Sort by',
|
141 |
+
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
|
142 |
+
label_visibility='hidden')
|
143 |
+
|
144 |
+
continue_idx = 1
|
145 |
+
|
146 |
+
else:
|
147 |
+
# add custom weights
|
148 |
+
sub_selecters = st.columns([1, 1, 1])
|
149 |
+
|
150 |
+
with sub_selecters[0]:
|
151 |
+
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=1.0, step=0.1, help='the weight for normalized clip score')
|
152 |
+
with sub_selecters[1]:
|
153 |
+
mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=0.8, step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
|
154 |
+
with sub_selecters[2]:
|
155 |
+
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=0.2, step=0.1, help='the weight for normalized popularity score')
|
156 |
+
|
157 |
+
items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
|
158 |
+
'norm_pop'] * pop_weight, 4)
|
159 |
+
|
160 |
+
continue_idx = 3
|
161 |
+
|
162 |
+
# save latest weights
|
163 |
+
st.session_state.score_weights[0] = round(clip_weight, 2)
|
164 |
+
st.session_state.score_weights[1] = round(mcos_weight, 2)
|
165 |
+
st.session_state.score_weights[2] = round(pop_weight, 2)
|
166 |
+
|
167 |
+
# # select threshold
|
168 |
+
# with sub_selecters[continue_idx]:
|
169 |
+
# nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=0.8, step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
|
170 |
+
# items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)
|
171 |
+
#
|
172 |
+
# # save latest threshold
|
173 |
+
# st.session_state.score_weights[3] = nsfw_threshold
|
174 |
+
|
175 |
+
# # draw a distribution histogram
|
176 |
+
# if sort_type == 'Scores':
|
177 |
+
# try:
|
178 |
+
# with st.expander('Show score distribution histogram and select score range'):
|
179 |
+
# st.write('**Score distribution histogram**')
|
180 |
+
# chart_space = st.container()
|
181 |
+
# # st.write('Select the range of scores to show')
|
182 |
+
# hist_data = pd.DataFrame(items[sort_by])
|
183 |
+
# mini = hist_data[sort_by].min().item()
|
184 |
+
# mini = mini//0.1 * 0.1
|
185 |
+
# maxi = hist_data[sort_by].max().item()
|
186 |
+
# maxi = maxi//0.1 * 0.1 + 0.1
|
187 |
+
# st.write('**Select the range of scores to show**')
|
188 |
+
# r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
|
189 |
+
# with chart_space:
|
190 |
+
# st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
|
191 |
+
# # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
|
192 |
+
# # r = event_dict.get(sort_by)
|
193 |
+
# if r:
|
194 |
+
# items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
|
195 |
+
# # st.write(r)
|
196 |
+
# except:
|
197 |
+
# pass
|
198 |
+
|
199 |
+
display_options = st.columns([1, 4])
|
200 |
+
|
201 |
+
with display_options[0]:
|
202 |
+
# select order
|
203 |
+
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
|
204 |
+
if order == 'Ascending':
|
205 |
+
order = True
|
206 |
+
else:
|
207 |
+
order = False
|
208 |
+
|
209 |
+
with display_options[1]:
|
210 |
+
|
211 |
+
# select info to show
|
212 |
+
info = st.multiselect('Show Info',
|
213 |
+
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
|
214 |
+
'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
|
215 |
+
'nsfw_score', 'norm_nsfw'],
|
216 |
+
default=sort_by)
|
217 |
+
|
218 |
+
# apply sorting to dataframe
|
219 |
+
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
|
220 |
+
|
221 |
+
# select number of columns
|
222 |
+
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
|
223 |
+
|
224 |
+
return items, info, col_num
|
225 |
+
|
226 |
+
def sidebar(self, items, prompt_id, note):
|
227 |
+
with st.sidebar:
|
228 |
+
# prompt_tags = self.promptBook['tag'].unique()
|
229 |
+
# # sort tags by alphabetical order
|
230 |
+
# prompt_tags = np.sort(prompt_tags)[::1]
|
231 |
+
#
|
232 |
+
# tag = st.selectbox('Select a tag', prompt_tags, index=5)
|
233 |
+
#
|
234 |
+
# items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
|
235 |
+
#
|
236 |
+
# prompts = np.sort(items['prompt'].unique())[::1]
|
237 |
+
#
|
238 |
+
# selected_prompt = st.selectbox('Select prompt', prompts, index=3)
|
239 |
+
|
240 |
+
# mode = st.radio('Select a mode', ['Gallery', 'Graph'], horizontal=True, index=1)
|
241 |
+
|
242 |
+
# items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
|
243 |
+
|
244 |
+
# st.title('Model Visualization and Retrieval')
|
245 |
+
|
246 |
+
# show source
|
247 |
+
if isinstance(note, str):
|
248 |
+
if note.isdigit():
|
249 |
+
st.caption(f"`Source: civitai`")
|
250 |
+
else:
|
251 |
+
st.caption(f"`Source: {note}`")
|
252 |
+
else:
|
253 |
+
st.caption("`Source: Parti-prompts`")
|
254 |
+
|
255 |
+
# show image metadata
|
256 |
+
image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
|
257 |
+
for key in image_metadatas:
|
258 |
+
label = ' '.join(key.split('_')).capitalize()
|
259 |
+
st.write(f"**{label}**")
|
260 |
+
if items[key][0] == ' ':
|
261 |
+
st.write('`None`')
|
262 |
+
else:
|
263 |
+
st.caption(f"{items[key][0]}")
|
264 |
+
|
265 |
+
# for note as civitai image id, add civitai reference
|
266 |
+
if isinstance(note, str) and note.isdigit():
|
267 |
+
try:
|
268 |
+
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
|
269 |
+
res = requests.get(f'https://civitai.com/images/{note}')
|
270 |
+
# st.write(res.text)
|
271 |
+
soup = BeautifulSoup(res.text, 'html.parser')
|
272 |
+
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
|
273 |
+
image_url = image_section.find('img')['src']
|
274 |
+
st.image(image_url, use_column_width=True)
|
275 |
+
except:
|
276 |
+
pass
|
277 |
+
|
278 |
+
# return prompt_tags, tag, prompt_id, items
|
279 |
+
|
280 |
+
def app(self):
|
281 |
+
st.write('### Model Visualization and Retrieval')
|
282 |
+
# st.write('This is a gallery of images generated by the models')
|
283 |
+
|
284 |
+
# build the tabular view
|
285 |
+
prompt_tags = self.promptBook['tag'].unique()
|
286 |
+
# sort tags by alphabetical order
|
287 |
+
prompt_tags = np.sort(prompt_tags)[::1].tolist()
|
288 |
+
|
289 |
+
# chosen_data = [stx.TabBarItemData(id=tag, title=tag, description='') for tag in prompt_tags]
|
290 |
+
# tag = stx.tab_bar(chosen_data, key='tag', default='food')
|
291 |
+
|
292 |
+
# save tag to session state on change
|
293 |
+
tag = st.radio('Select a tag', prompt_tags, index=5, horizontal=True, key='tag', label_visibility='collapsed')
|
294 |
+
|
295 |
+
# tabs = st.tabs(prompt_tags)
|
296 |
+
# for i in range(len(prompt_tags)):
|
297 |
+
# with tabs[i]:
|
298 |
+
# tag = prompt_tags[i]
|
299 |
+
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
|
300 |
+
|
301 |
+
prompts = np.sort(items['prompt'].unique())[::1].tolist()
|
302 |
+
|
303 |
+
# st.caption('Select a prompt')
|
304 |
+
subset_selector = st.columns([3, 1])
|
305 |
+
with subset_selector[0]:
|
306 |
+
selected_prompt = selectbox('Select prompt', prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=0)
|
307 |
+
# st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0
|
308 |
+
|
309 |
+
if selected_prompt is None:
|
310 |
+
# st.markdown(':orange[Please select a prompt above👆]')
|
311 |
+
st.write('**Feel free to navigate among tags and pages! Your selection will be saved within one log-in session.**')
|
312 |
+
|
313 |
+
with subset_selector[-1]:
|
314 |
+
st.write(':orange[👈 **Please select a prompt**]')
|
315 |
+
|
316 |
+
else:
|
317 |
+
items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
|
318 |
+
prompt_id = items['prompt_id'].unique()[0]
|
319 |
+
note = items['note'].unique()[0]
|
320 |
+
|
321 |
+
# add state to session state
|
322 |
+
if prompt_id not in st.session_state.gallery_state:
|
323 |
+
st.session_state.gallery_state[prompt_id] = 'graph'
|
324 |
+
|
325 |
+
# add focus to session state
|
326 |
+
st.session_state.gallery_focus['tag'] = tag
|
327 |
+
st.session_state.gallery_focus['prompt'] = selected_prompt
|
328 |
+
|
329 |
+
# add safety check for some prompts
|
330 |
+
safety_check = True
|
331 |
+
|
332 |
+
# load unsafe prompts
|
333 |
+
unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r'))
|
334 |
+
for prompt_tag in prompt_tags:
|
335 |
+
if prompt_tag not in unsafe_prompts:
|
336 |
+
unsafe_prompts[prompt_tag] = []
|
337 |
+
# # manually add unsafe prompts
|
338 |
+
# unsafe_prompts['world knowledge'] = [83]
|
339 |
+
# unsafe_prompts['abstract'] = [1, 3]
|
340 |
+
|
341 |
+
if int(prompt_id.item()) in unsafe_prompts[tag]:
|
342 |
+
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
|
343 |
+
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}')
|
344 |
+
|
345 |
+
print('current state: ', st.session_state.gallery_state[prompt_id])
|
346 |
+
|
347 |
+
if st.session_state.gallery_state[prompt_id] == 'graph':
|
348 |
+
if safety_check:
|
349 |
+
self.graph_mode(prompt_id, items)
|
350 |
+
with subset_selector[-1]:
|
351 |
+
has_selection = False
|
352 |
+
try:
|
353 |
+
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
|
354 |
+
has_selection = True
|
355 |
+
except:
|
356 |
+
pass
|
357 |
+
|
358 |
+
if has_selection:
|
359 |
+
checkout = st.button('Check out selections', use_container_width=True, type='primary')
|
360 |
+
if checkout:
|
361 |
+
print('checkout')
|
362 |
+
|
363 |
+
st.session_state.gallery_state[prompt_id] = 'gallery'
|
364 |
+
print(st.session_state.gallery_state[prompt_id])
|
365 |
+
st.experimental_rerun()
|
366 |
+
else:
|
367 |
+
st.write(':orange[👇 **Select images you like below**]')
|
368 |
+
|
369 |
+
elif st.session_state.gallery_state[prompt_id] == 'gallery':
|
370 |
+
items = items[items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(
|
371 |
+
drop=True)
|
372 |
+
self.gallery_mode(prompt_id, items)
|
373 |
+
|
374 |
+
with subset_selector[-1]:
|
375 |
+
state_operations = st.columns([1, 1])
|
376 |
+
with state_operations[0]:
|
377 |
+
back = st.button('Back to 🖼️', use_container_width=True)
|
378 |
+
if back:
|
379 |
+
st.session_state.gallery_state[prompt_id] = 'graph'
|
380 |
+
st.experimental_rerun()
|
381 |
+
|
382 |
+
with state_operations[1]:
|
383 |
+
forward = st.button('Check out', use_container_width=True, type='primary', on_click=self.submit_actions, args=('Continue', prompt_id))
|
384 |
+
if forward:
|
385 |
+
switch_page('ranking')
|
386 |
+
|
387 |
+
try:
|
388 |
+
self.sidebar(items, prompt_id, note)
|
389 |
+
except:
|
390 |
+
pass
|
391 |
+
|
392 |
+
def graph_mode(self, prompt_id, items):
|
393 |
+
graph_cols = st.columns([3, 1])
|
394 |
+
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}",
|
395 |
+
# disabled=False, key=f'{prompt_id}')
|
396 |
+
# if prompt:
|
397 |
+
# switch_page("ranking")
|
398 |
+
|
399 |
+
with graph_cols[0]:
|
400 |
+
graph_space = st.empty()
|
401 |
+
|
402 |
+
with graph_space.container():
|
403 |
+
return_value = self.gallery_graph(items)
|
404 |
+
|
405 |
+
with graph_cols[1]:
|
406 |
+
if return_value:
|
407 |
+
with st.form(key=f'{prompt_id}'):
|
408 |
+
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png"
|
409 |
+
|
410 |
+
st.image(image_url)
|
411 |
+
|
412 |
+
item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0]
|
413 |
+
modelVersion_id = item['modelVersion_id']
|
414 |
+
|
415 |
+
# handle selection
|
416 |
+
if 'selected_dict' in st.session_state:
|
417 |
+
if item['prompt_id'] not in st.session_state.selected_dict:
|
418 |
+
st.session_state.selected_dict[item['prompt_id']] = []
|
419 |
+
|
420 |
+
if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]:
|
421 |
+
checked = True
|
422 |
+
else:
|
423 |
+
checked = False
|
424 |
+
|
425 |
+
if checked:
|
426 |
+
# deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True)
|
427 |
+
deselect = st.form_submit_button('Deselect', use_container_width=True)
|
428 |
+
if deselect:
|
429 |
+
st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id'])
|
430 |
+
self.remove_ranking_states(item['prompt_id'])
|
431 |
+
st.experimental_rerun()
|
432 |
+
|
433 |
+
else:
|
434 |
+
# select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary')
|
435 |
+
select = st.form_submit_button('Select', use_container_width=True, type='primary')
|
436 |
+
if select:
|
437 |
+
st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id'])
|
438 |
+
self.remove_ranking_states(item['prompt_id'])
|
439 |
+
st.experimental_rerun()
|
440 |
+
|
441 |
+
# st.write(item)
|
442 |
+
infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score',
|
443 |
+
'nsfw_score']
|
444 |
+
|
445 |
+
infos_df = item[infos]
|
446 |
+
# rename columns
|
447 |
+
infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'})
|
448 |
+
st.table(infos_df)
|
449 |
+
|
450 |
+
# for info in infos:
|
451 |
+
# st.write(f"**{info}**:")
|
452 |
+
# st.write(item[info])
|
453 |
+
|
454 |
+
else:
|
455 |
+
st.info('Please click on an image to show')
|
456 |
+
|
457 |
+
def gallery_mode(self, prompt_id, items):
|
458 |
+
items, info, col_num = self.selection_panel(items)
|
459 |
+
|
460 |
+
# if 'selected_dict' in st.session_state:
|
461 |
+
# # st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
|
462 |
+
# dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
|
463 |
+
# dynamic_weight_panel = st.columns(len(dynamic_weight_options))
|
464 |
+
#
|
465 |
+
# if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
|
466 |
+
# btn_disable = False
|
467 |
+
# else:
|
468 |
+
# btn_disable = True
|
469 |
+
#
|
470 |
+
# for i in range(len(dynamic_weight_options)):
|
471 |
+
# method = dynamic_weight_options[i]
|
472 |
+
# with dynamic_weight_panel[i]:
|
473 |
+
# btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))
|
474 |
+
|
475 |
+
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", disabled=False, key=f'{prompt_id}')
|
476 |
+
# if prompt:
|
477 |
+
# switch_page("ranking")
|
478 |
+
|
479 |
+
# with st.form(key=f'{prompt_id}'):
|
480 |
+
# buttons = st.columns([1, 1, 1])
|
481 |
+
# buttons_space = st.columns([1, 1, 1])
|
482 |
+
gallery_space = st.empty()
|
483 |
+
|
484 |
+
# with buttons_space[0]:
|
485 |
+
# continue_btn = st.button('Proceed selections to ranking', use_container_width=True, type='primary')
|
486 |
+
# if continue_btn:
|
487 |
+
# # self.submit_actions('Continue', prompt_id)
|
488 |
+
# switch_page("ranking")
|
489 |
+
#
|
490 |
+
# with buttons_space[1]:
|
491 |
+
# deselect_btn = st.button('Deselect All', use_container_width=True)
|
492 |
+
# if deselect_btn:
|
493 |
+
# self.submit_actions('Deselect', prompt_id)
|
494 |
+
#
|
495 |
+
# with buttons_space[2]:
|
496 |
+
# refresh_btn = st.button('Refresh', on_click=gallery_space.empty, use_container_width=True)
|
497 |
+
|
498 |
+
with gallery_space.container():
|
499 |
+
self.gallery_standard(items, col_num, info)
|
500 |
+
|
501 |
+
def submit_actions(self, status, prompt_id):
|
502 |
+
# remove counter from session state
|
503 |
+
# st.session_state.pop('counter', None)
|
504 |
+
self.remove_ranking_states('prompt_id')
|
505 |
+
if status == 'Select':
|
506 |
+
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
|
507 |
+
st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
|
508 |
+
print(st.session_state.selected_dict, 'select')
|
509 |
+
st.experimental_rerun()
|
510 |
+
elif status == 'Deselect':
|
511 |
+
st.session_state.selected_dict[prompt_id] = []
|
512 |
+
print(st.session_state.selected_dict, 'deselect')
|
513 |
+
st.experimental_rerun()
|
514 |
+
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
|
515 |
+
elif status == 'Continue':
|
516 |
+
st.session_state.selected_dict[prompt_id] = []
|
517 |
+
for key in st.session_state:
|
518 |
+
keys = key.split('_')
|
519 |
+
if keys[0] == 'select' and keys[1] == str(prompt_id):
|
520 |
+
if st.session_state[key]:
|
521 |
+
st.session_state.selected_dict[prompt_id].append(int(keys[2]))
|
522 |
+
# switch_page("ranking")
|
523 |
+
print(st.session_state.selected_dict, 'continue')
|
524 |
+
# st.experimental_rerun()
|
525 |
+
|
526 |
+
def dynamic_weight(self, prompt_id, items, method='Grid Search'):
|
527 |
+
selected = items[
|
528 |
+
items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
|
529 |
+
optimal_weight = [0, 0, 0]
|
530 |
+
|
531 |
+
if method == 'Grid Search':
|
532 |
+
# grid search method
|
533 |
+
top_ranking = len(items) * len(selected)
|
534 |
+
|
535 |
+
for clip_weight in np.arange(-1, 1, 0.1):
|
536 |
+
for mcos_weight in np.arange(-1, 1, 0.1):
|
537 |
+
for pop_weight in np.arange(-1, 1, 0.1):
|
538 |
+
|
539 |
+
weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
|
540 |
+
weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
|
541 |
+
# print('weight_all_sorted:', weight_all_sorted)
|
542 |
+
weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']
|
543 |
+
|
544 |
+
# get the index of values of weight_selected in weight_all_sorted
|
545 |
+
rankings = []
|
546 |
+
for weight in weight_selected:
|
547 |
+
rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
|
548 |
+
if sum(rankings) <= top_ranking:
|
549 |
+
top_ranking = sum(rankings)
|
550 |
+
print('current top ranking:', top_ranking, rankings)
|
551 |
+
optimal_weight = [clip_weight, mcos_weight, pop_weight]
|
552 |
+
print('optimal weight:', optimal_weight)
|
553 |
+
|
554 |
+
elif method == 'SVM':
|
555 |
+
# svm method
|
556 |
+
print('start svm method')
|
557 |
+
# get residual dataframe that contains models not selected
|
558 |
+
residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
|
559 |
+
residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
|
560 |
+
residual = residual.to_numpy()
|
561 |
+
selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
|
562 |
+
selected = selected.to_numpy()
|
563 |
+
|
564 |
+
y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
|
565 |
+
X = np.concatenate((selected, residual), axis=0)
|
566 |
+
|
567 |
+
# fit svm model, and get parameters for the hyperplane
|
568 |
+
clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
|
569 |
+
clf.fit(X, y)
|
570 |
+
optimal_weight = clf.coef_[0].tolist()
|
571 |
+
print('optimal weight:', optimal_weight)
|
572 |
+
pass
|
573 |
+
|
574 |
+
elif method == 'Greedy':
|
575 |
+
for idx in selected.index:
|
576 |
+
# find which score is the highest, clip, mcos, or pop
|
577 |
+
clip_score = selected.loc[idx, 'norm_clip_crop']
|
578 |
+
mcos_score = selected.loc[idx, 'norm_mcos_crop']
|
579 |
+
pop_score = selected.loc[idx, 'norm_pop']
|
580 |
+
if clip_score >= mcos_score and clip_score >= pop_score:
|
581 |
+
optimal_weight[0] += 1
|
582 |
+
elif mcos_score >= clip_score and mcos_score >= pop_score:
|
583 |
+
optimal_weight[1] += 1
|
584 |
+
elif pop_score >= clip_score and pop_score >= mcos_score:
|
585 |
+
optimal_weight[2] += 1
|
586 |
+
|
587 |
+
# normalize optimal_weight
|
588 |
+
optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
|
589 |
+
print('optimal weight:', optimal_weight)
|
590 |
+
print('optimal weight:', optimal_weight)
|
591 |
+
|
592 |
+
st.session_state.score_weights[0: 3] = optimal_weight
|
593 |
+
|
594 |
+
|
595 |
+
def remove_ranking_states(self, prompt_id):
|
596 |
+
# for drag sort
|
597 |
+
try:
|
598 |
+
st.session_state.counter[prompt_id] = 0
|
599 |
+
st.session_state.ranking[prompt_id] = {}
|
600 |
+
print('remove ranking states')
|
601 |
+
except:
|
602 |
+
print('no sort ranking states to remove')
|
603 |
+
|
604 |
+
# for battles
|
605 |
+
try:
|
606 |
+
st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1}
|
607 |
+
print('remove battles states')
|
608 |
+
except:
|
609 |
+
print('no battles states to remove')
|
610 |
+
|
611 |
+
# for page progress
|
612 |
+
try:
|
613 |
+
st.session_state.progress[prompt_id] = 'ranking'
|
614 |
+
print('reset page progress states')
|
615 |
+
except:
|
616 |
+
print('no page progress states to be reset')
|
617 |
+
|
618 |
+
|
619 |
+
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
|
620 |
+
@st.cache_resource
|
621 |
+
def altair_histogram(hist_data, sort_by, mini, maxi):
|
622 |
+
brushed = alt.selection_interval(encodings=['x'], name="brushed")
|
623 |
+
|
624 |
+
chart = (
|
625 |
+
alt.Chart(hist_data)
|
626 |
+
.mark_bar(opacity=0.7, cornerRadius=2)
|
627 |
+
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
|
628 |
+
# .add_selection(brushed)
|
629 |
+
# .properties(width=800, height=300)
|
630 |
+
)
|
631 |
+
|
632 |
+
# Create a transparent rectangle for highlighting the range
|
633 |
+
highlight = (
|
634 |
+
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
|
635 |
+
.mark_rect(opacity=0.3)
|
636 |
+
.encode(x='x1', x2='x2')
|
637 |
+
# .properties(width=800, height=300)
|
638 |
+
)
|
639 |
+
|
640 |
+
# Layer the chart and the highlight rectangle
|
641 |
+
layered_chart = alt.layer(chart, highlight)
|
642 |
+
|
643 |
+
return layered_chart
|
644 |
+
|
645 |
+
|
646 |
+
@st.cache_data
|
647 |
+
def load_hf_dataset(show_NSFW=False):
|
648 |
+
# login to huggingface
|
649 |
+
login(token=os.environ.get("HF_TOKEN"))
|
650 |
+
|
651 |
+
# load from huggingface
|
652 |
+
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
|
653 |
+
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
|
654 |
+
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
|
655 |
+
images_ds = None # set to None for now since we use s3 bucket to store images
|
656 |
+
|
657 |
+
# # process dataset
|
658 |
+
# roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
|
659 |
+
# 'model_download_count']].drop_duplicates().reset_index(drop=True)
|
660 |
+
|
661 |
+
# add 'custom_score_weights' column to promptBook if not exist
|
662 |
+
if 'weighted_score_sum' not in promptBook.columns:
|
663 |
+
promptBook.loc[:, 'weighted_score_sum'] = 0
|
664 |
+
|
665 |
+
# merge roster and promptbook
|
666 |
+
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
|
667 |
+
on=['model_id', 'modelVersion_id'], how='left')
|
668 |
+
|
669 |
+
# add column to record current row index
|
670 |
+
promptBook.loc[:, 'row_idx'] = promptBook.index
|
671 |
+
|
672 |
+
# apply a nsfw filter
|
673 |
+
if not show_NSFW:
|
674 |
+
promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True)
|
675 |
+
print('nsfw filter applied', len(promptBook))
|
676 |
+
|
677 |
+
# add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop'
|
678 |
+
score_weights = [1.0, 0.8, 0.2]
|
679 |
+
promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4)
|
680 |
+
|
681 |
+
return roster, promptBook, images_ds
|
682 |
+
|
683 |
+
@st.cache_data
|
684 |
+
def load_tsne_coordinates(items):
|
685 |
+
# load tsne coordinates
|
686 |
+
tsne_df = pd.read_parquet('./data/feats_tsne.parquet')
|
687 |
+
|
688 |
+
# print(tsne_df['modelVersion_id'].dtype)
|
689 |
+
|
690 |
+
# print('before merge:', items)
|
691 |
+
items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left')
|
692 |
+
# print('after merge:', items)
|
693 |
+
return items
|
694 |
+
|
695 |
+
|
696 |
+
if __name__ == "__main__":
|
697 |
+
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")
|
698 |
+
|
699 |
+
if 'user_id' not in st.session_state:
|
700 |
+
st.warning('Please log in first.')
|
701 |
+
home_btn = st.button('Go to Home Page')
|
702 |
+
if home_btn:
|
703 |
+
switch_page("home")
|
704 |
+
else:
|
705 |
+
# st.write('You have already logged in as ' + st.session_state.user_id[0])
|
706 |
+
roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW)
|
707 |
+
# print(promptBook.columns)
|
708 |
+
|
709 |
+
# # initialize selected_dict
|
710 |
+
# if 'selected_dict' not in st.session_state:
|
711 |
+
# st.session_state['selected_dict'] = {}
|
712 |
+
|
713 |
+
app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
|
714 |
+
app.app()
|
715 |
+
|
716 |
+
with open('./css/style.css') as f:
|
717 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
718 |
+
|