import os
import streamlit as st
import torch
import pandas as pd
import numpy as np
import requests
from bokeh.plotting import figure, show
from bokeh.models import HoverTool, ColumnDataSource, CustomJSHover
from bokeh.embed import file_html
from bokeh.resources import CDN # Import CDN here
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from sklearn.manifold import TSNE
from tqdm import tqdm
@st.cache_data
def load_hf_dataset():
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
# process dataset
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
return roster, promptBook
def show_with_bokeh(data, streamlit=False):
# Extract x, y coordinates and image URLs
x_coords, y_coords, image_urls = zip(*data)
# Create a ColumnDataSource
source = ColumnDataSource(data=dict(x=x_coords, y=y_coords, image=image_urls))
# Create a figure
p = figure(width=800, height=600)
# Add scatter plot
scatter = p.scatter(x='x', y='y', size=20, source=source)
# Define hover tool
hover = HoverTool()
# hover.tooltips = """
#
#
#
# """
# hover.formatters = {'@image': CustomJSHover(code="""
# const index = cb_data.index;
# const url = cb_data.source.data['image'][index];
# return '';
# """)}
hover.tooltips = """
"""
hover.formatters = {'@image': CustomJSHover(code="""
const index = cb_data.index;
const url = cb_data.source.data['image'][index];
return '';
""")}
p.add_tools(hover)
# Generate HTML with the plot
html = file_html(p, CDN, "Interactive Scatter Plot with Hover Images")
# Save the HTML file or show it
# with open("scatter_plot_with_hover_images.html", "w") as f:
# f.write(html)
if streamlit:
st.bokeh_chart(p, use_container_width=True)
else:
show(p)
def show_with_bokeh_2(data, image_size=[40, 40], streamlit=False):
# Extract x, y coordinates and image URLs
x_coords, y_coords, image_urls = zip(*data)
# Create a ColumnDataSource
source = ColumnDataSource(data=dict(x=x_coords, y=y_coords, image=image_urls))
# Create a figure
p = figure(width=800, height=600, aspect_ratio=1.0)
# Add image glyphs
# image_size = 40 # Adjust this size as needed
scale = 0.1
image_size = [int(image_size[0])*scale, int(image_size[1])*scale]
print(image_size)
p.image_url(url='image', x='x', y='y', source=source, w=image_size[0], h=image_size[1], anchor="center")
# Define hover tool
hover = HoverTool()
hover.tooltips = """
"""
p.add_tools(hover)
# Generate HTML with the plot
html = file_html(p, CDN, "Scatter Plot with Images")
# Save the HTML file or show it
# with open("scatter_plot_with_images.html", "w") as f:
# f.write(html)
if streamlit:
st.bokeh_chart(p, use_container_width=True)
else:
show(p)
if __name__ == '__main__':
# load dataset
roster, promptBook = load_hf_dataset()
print('==> loading feats')
feats = {}
for pt in os.listdir('../data/feats'):
if pt.split('.')[-1] == 'pt' and pt.split('.')[0].isdigit():
feats[pt.split('.')[0]] = torch.load(os.path.join('../data/feats', pt))
print('==> applying t-SNE')
# apply t-SNE to entries in each feat in feats to get 2D coordinates
tsne = TSNE(n_components=2, random_state=0)
# for k, v in tqdm(feats.items()):
# feats[k]['tsne'] = tsne.fit_transform(v['all'].numpy())
prompt_id = '49'
feats[prompt_id]['tsne'] = tsne.fit_transform(feats[prompt_id]['all'].numpy())
print(feats[prompt_id]['tsne'])
keys = []
for k in feats[prompt_id].keys():
if k != 'all' and k != 'tsne':
keys.append(int(k.item()))
print(keys)
data = []
for idx in range(len(keys)):
modelVersion_id = keys[idx]
image_id = promptBook[(promptBook['modelVersion_id'] == modelVersion_id) & (promptBook['prompt_id'] == int(prompt_id))].reset_index(drop=True).loc[0, 'image_id']
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{image_id}.png"
scale = 50
data.append((feats[prompt_id]['tsne'][idx][0]*scale, feats[prompt_id]['tsne'][idx][1]*scale, image_url))
image_size = promptBook[(promptBook['image_id'] == image_id)].reset_index(drop=True).loc[0, 'size'].split('x')
# # Sample data: (x, y) coordinates and corresponding image URLs
# data = [
# (2, 5, "https://www.crunchyroll.com/imgsrv/display/thumbnail/480x720/catalog/crunchyroll/669dae5dbea3d93bb5f1012078501976.jpeg"),
# (4, 8, "https://i.pinimg.com/originals/40/6d/38/406d38957bc4fd12f34c5dfa3d73b86d.jpg"),
# (7, 3, "https://i.pinimg.com/550x/76/27/d2/7627d227adc6fb5fb6662ebfb9d82d7e.jpg"),
# # Add more data points and image URLs
# ]
# show_with_bokeh(data, streamlit=True)
show_with_bokeh_2(data, image_size=image_size, streamlit=True)