Spaces:
Runtime error
Runtime error
File size: 17,786 Bytes
8b33290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import itertools
import logging
import os
import sys
from typing import Any, List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
import librosa
from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
logger = logging.getLogger(__name__)
def _collate_frames(
frames: List[torch.Tensor], is_audio_input: bool = False
):
"""
Convert a list of 2D frames into a padded 3D tensor
Args:
frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is
length of i-th frame and f_dim is static dimension of features
Returns:
3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
"""
max_len = max(frame.size(0) for frame in frames)
if is_audio_input:
out = frames[0].new_zeros((len(frames), max_len))
else:
out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1)))
for i, v in enumerate(frames):
out[i, : v.size(0)] = v
return out
def add_first_frame_and_remove_last_frame(ys):
ys_in = torch.cat(
[ys.new_zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], dim=1
)
return ys_in
def load_audio(manifest_path, max_keep, min_keep):
n_long, n_short = 0, 0
names, inds, sizes, spk_embeds = [], [], [], []
with open(manifest_path) as f:
root = f.readline().strip()
for ind, line in enumerate(f):
items = line.strip().split("\t")
assert len(items) == 3, line
sz = int(items[1])
if min_keep is not None and sz < min_keep:
n_short += 1
elif max_keep is not None and sz > max_keep:
n_long += 1
else:
names.append(items[0])
spk_embeds.append(items[2])
inds.append(ind)
sizes.append(sz)
tot = ind + 1
logger.info(
(
f"max_keep={max_keep}, min_keep={min_keep}, "
f"loaded {len(names)}, skipped {n_short} short and {n_long} long, "
f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
)
)
return root, names, inds, tot, sizes, spk_embeds
def load_label(label_path, inds, tot):
with open(label_path) as f:
labels = [line.rstrip() for line in f]
assert (
len(labels) == tot
), f"number of labels does not match ({len(labels)} != {tot})"
labels = [labels[i] for i in inds]
return labels
def load_label_offset(label_path, inds, tot):
with open(label_path) as f:
code_lengths = [len(line.encode("utf-8")) for line in f]
assert (
len(code_lengths) == tot
), f"number of labels does not match ({len(code_lengths)} != {tot})"
offsets = list(itertools.accumulate([0] + code_lengths))
offsets = [(offsets[i], offsets[i + 1]) for i in inds]
return offsets
def verify_label_lengths(
audio_sizes,
audio_rate,
label_path,
label_rate,
inds,
tot,
tol=0.1, # tolerance in seconds
):
if label_rate < 0:
logger.info(f"{label_path} is sequence label. skipped")
return
with open(label_path) as f:
lengths = [len(line.rstrip().split()) for line in f]
assert len(lengths) == tot
lengths = [lengths[i] for i in inds]
num_invalid = 0
for i, ind in enumerate(inds):
dur_from_audio = audio_sizes[i] / audio_rate
dur_from_label = lengths[i] / label_rate
if abs(dur_from_audio - dur_from_label) > tol:
logger.warning(
(
f"audio and label duration differ too much "
f"(|{dur_from_audio} - {dur_from_label}| > {tol}) "
f"in line {ind+1} of {label_path}. Check if `label_rate` "
f"is correctly set (currently {label_rate}). "
f"num. of samples = {audio_sizes[i]}; "
f"label length = {lengths[i]}"
)
)
num_invalid += 1
if num_invalid > 0:
logger.warning(
f"total {num_invalid} (audio, label) pairs with mismatched lengths"
)
def logmelfilterbank(
audio,
sampling_rate,
fft_size=1024,
hop_size=256,
win_length=None,
window="hann",
num_mels=80,
fmin=80,
fmax=7600,
eps=1e-10,
):
"""Compute log-Mel filterbank feature.
(https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py)
Args:
audio (ndarray): Audio signal (T,).
sampling_rate (int): Sampling rate.
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length. If set to None, it will be the same as fft_size.
window (str): Window function type.
num_mels (int): Number of mel basis.
fmin (int): Minimum frequency in mel basis calculation.
fmax (int): Maximum frequency in mel basis calculation.
eps (float): Epsilon value to avoid inf in log calculation.
Returns:
ndarray: Log Mel filterbank feature (#frames, num_mels).
"""
# get amplitude spectrogram
x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size,
win_length=win_length, window=window, pad_mode="reflect")
spc = np.abs(x_stft).T # (#frames, #bins)
# get mel basis
fmin = 0 if fmin is None else fmin
fmax = sampling_rate / 2 if fmax is None else fmax
mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax)
return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))
class SpeechPretrainDataset(FairseqDataset):
def __init__(
self,
manifest_path: str,
sample_rate: float,
label_paths: List[str],
label_rates: Union[List[float], float], # -1 for sequence labels
pad_list: List[str],
eos_list: List[str],
label_processors: Optional[List[Any]] = None,
max_keep_sample_size: Optional[int] = None,
min_keep_sample_size: Optional[int] = None,
max_sample_size: Optional[int] = None,
shuffle: bool = True,
pad_audio: bool = False,
normalize: bool = False,
store_labels: bool = True,
random_crop: bool = False,
single_target: bool = False,
reduction_factor: int = 1,
):
self.audio_root, self.audio_names, inds, tot, self.sizes, self.spk_embeds = load_audio(
manifest_path, max_keep_sample_size, min_keep_sample_size
)
self.sample_rate = sample_rate
self.shuffle = shuffle
self.random_crop = random_crop
self.num_labels = len(label_paths)
self.pad_list = pad_list
self.eos_list = eos_list
self.label_processors = label_processors
self.single_target = single_target
self.label_rates = (
[label_rates for _ in range(len(label_paths))]
if isinstance(label_rates, float)
else label_rates
)
self.store_labels = store_labels
if store_labels:
self.label_list = [load_label(p, inds, tot) for p in label_paths]
else:
self.label_paths = label_paths
self.label_offsets_list = [
load_label_offset(p, inds, tot) for p in label_paths
]
assert label_processors is None or len(label_processors) == self.num_labels
for label_path, label_rate in zip(label_paths, self.label_rates):
verify_label_lengths(
self.sizes, sample_rate, label_path, label_rate, inds, tot
)
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.pad_audio = pad_audio
self.normalize = normalize
self.reduction_factor = reduction_factor
logger.info(
f"pad_audio={pad_audio}, random_crop={random_crop}, reduction_factor={reduction_factor}, "
f"normalize={normalize}, max_sample_size={self.max_sample_size}"
)
def get_audio(self, index):
import soundfile as sf
wav_path = os.path.join(self.audio_root, self.audio_names[index])
wav, cur_sample_rate = sf.read(wav_path)
wav = torch.from_numpy(wav).float()
fbank = logmelfilterbank(
wav.view(-1).cpu().numpy(), 16000
)
fbank = torch.from_numpy(fbank).float()
wav = self.postprocess(wav, cur_sample_rate)
return wav, fbank
def get_label(self, index, label_idx):
if self.store_labels:
label = self.label_list[label_idx][index]
else:
with open(self.label_paths[label_idx]) as f:
offset_s, offset_e = self.label_offsets_list[label_idx][index]
f.seek(offset_s)
label = f.read(offset_e - offset_s)
if self.label_processors is not None:
label = self.label_processors[label_idx](label)
return label
def get_labels(self, index):
return [self.get_label(index, i) for i in range(self.num_labels)]
def __getitem__(self, index):
wav, fbank = self.get_audio(index)
labels = self.get_labels(index)
spkembs = get_features_or_waveform(
os.path.join(self.audio_root, self.spk_embeds[index])
)
spkembs = torch.from_numpy(spkembs).float()
return {"id": index, "source": wav, "target": fbank, "label_list": labels, 'spkembs': spkembs}
def __len__(self):
return len(self.sizes)
def crop_to_max_size(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav, 0
start, end = 0, target_size
if self.random_crop:
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end], start
def collater(self, samples):
# target = max(sizes) -> random_crop not used
# target = max_sample_size -> random_crop used for long
samples = [s for s in samples if s["source"] is not None]
if len(samples) == 0:
return {}
audios = [s["source"] for s in samples]
audio_sizes = [len(s) for s in audios]
fbanks = [s["target"] for s in samples]
fbank_sizes = [len(s) for s in fbanks]
if self.pad_audio:
audio_size = min(max(audio_sizes), self.max_sample_size)
else:
audio_size = min(min(audio_sizes), self.max_sample_size)
collated_audios, padding_mask, audio_starts = self.collater_audio(
audios, audio_size
)
collated_fbanks = []
collated_audios_size = []
for i in range(len(fbanks)):
fbank_start = int(audio_starts[i] / (audio_sizes[i] / fbank_sizes[i]))
fbank_size = int(audio_size / (audio_sizes[i] / fbank_sizes[i]))
fbank_end = min(fbank_start + fbank_size, fbank_sizes[i])
collated_fbanks.append(fbanks[i][fbank_start : fbank_end])
collated_audios_size.append(audio_size)
collated_fbanks_size = [len(s) for s in collated_fbanks]
collated_fbanks = _collate_frames(collated_fbanks)
collated_fbanks_size = torch.tensor(collated_fbanks_size, dtype=torch.long)
# thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim)
if self.reduction_factor > 1:
collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor]
collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size])
else:
collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size
prev_output_tokens = torch.cat(
[collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1
)
# make labels for stop prediction
labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1))
for i, l in enumerate(fbank_sizes):
labels[i, l - 1 :] = 1.0
spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True)
targets_by_label = [
[s["label_list"][i] for s in samples] for i in range(self.num_labels)
]
targets_list, lengths_list, ntokens_list = self.collater_label(
targets_by_label, audio_size, audio_starts
)
net_input = {
"source": collated_audios,
"padding_mask": padding_mask,
"prev_output_tokens": prev_output_tokens,
"spkembs": spkembs,
"tgt_lengths": collated_fbanks_size_in,
}
batch = {
"id": torch.LongTensor([s["id"] for s in samples]),
"net_input": net_input,
"labels": labels,
"dec_target": collated_fbanks,
"dec_target_lengths": collated_fbanks_size,
"src_lengths": collated_audios_size,
"task_name": 'speech_pretrain',
}
if self.single_target:
batch["target_lengths"] = lengths_list[0]
batch["ntokens"] = ntokens_list[0]
batch["target"] = targets_list[0]
else:
batch["target_lengths_list"] = lengths_list
batch["ntokens_list"] = ntokens_list
batch["target_list"] = targets_list
return batch
def collater_audio(self, audios, audio_size):
collated_audios = audios[0].new_zeros(len(audios), audio_size)
padding_mask = (
torch.BoolTensor(collated_audios.shape).fill_(False)
# if self.pad_audio else None
)
audio_starts = [0 for _ in audios]
for i, audio in enumerate(audios):
diff = len(audio) - audio_size
if diff == 0:
collated_audios[i] = audio
elif diff < 0:
assert self.pad_audio
collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)])
padding_mask[i, diff:] = True
else:
collated_audios[i], audio_starts[i] = self.crop_to_max_size(
audio, audio_size
)
return collated_audios, padding_mask, audio_starts
def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad):
assert label_rate > 0
s2f = label_rate / self.sample_rate
frm_starts = [int(round(s * s2f)) for s in audio_starts]
frm_size = int(round(audio_size * s2f))
if not self.pad_audio:
rem_size = [len(t) - s for t, s in zip(targets, frm_starts)]
frm_size = min(frm_size, *rem_size)
targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)]
logger.debug(f"audio_starts={audio_starts}")
logger.debug(f"frame_starts={frm_starts}")
logger.debug(f"frame_size={frm_size}")
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
return targets, lengths, ntokens
def collater_seq_label(self, targets, pad):
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
return targets, lengths, ntokens
def collater_label(self, targets_by_label, audio_size, audio_starts):
targets_list, lengths_list, ntokens_list = [], [], []
itr = zip(targets_by_label, self.label_rates, self.pad_list)
for targets, label_rate, pad in itr:
if label_rate == -1.0:
targets, lengths, ntokens = self.collater_seq_label(targets, pad)
else:
targets, lengths, ntokens = self.collater_frm_label(
targets, audio_size, audio_starts, label_rate, pad
)
targets_list.append(targets)
lengths_list.append(lengths)
ntokens_list.append(ntokens)
return targets_list, lengths_list, ntokens_list
def num_tokens(self, index):
return self.size(index)
def size(self, index):
if self.pad_audio:
return self.sizes[index]
return min(self.sizes[index], self.max_sample_size)
def ordered_indices(self):
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)[::-1]
def postprocess(self, wav, cur_sample_rate):
if wav.dim() == 2:
wav = wav.mean(-1)
assert wav.dim() == 1, wav.dim()
if cur_sample_rate != self.sample_rate:
raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}")
if self.normalize:
with torch.no_grad():
wav = F.layer_norm(wav, wav.shape)
return wav
|