File size: 17,786 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST

# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

import itertools
import logging
import os
import sys
from typing import Any, List, Optional, Union

import numpy as np

import torch
import torch.nn.functional as F
import librosa
from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset

logger = logging.getLogger(__name__)

def _collate_frames(
    frames: List[torch.Tensor], is_audio_input: bool = False
):
    """
    Convert a list of 2D frames into a padded 3D tensor
    Args:
        frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is
            length of i-th frame and f_dim is static dimension of features
    Returns:
        3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
    """
    max_len = max(frame.size(0) for frame in frames)
    if is_audio_input:
        out = frames[0].new_zeros((len(frames), max_len))
    else:
        out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1)))
    for i, v in enumerate(frames):
        out[i, : v.size(0)] = v
    return out

def add_first_frame_and_remove_last_frame(ys):
    ys_in = torch.cat(
        [ys.new_zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], dim=1
    )
    return ys_in

def load_audio(manifest_path, max_keep, min_keep):
    n_long, n_short = 0, 0
    names, inds, sizes, spk_embeds = [], [], [], []
    with open(manifest_path) as f:
        root = f.readline().strip()
        for ind, line in enumerate(f):
            items = line.strip().split("\t")
            assert len(items) == 3, line
            sz = int(items[1])
            if min_keep is not None and sz < min_keep:
                n_short += 1
            elif max_keep is not None and sz > max_keep:
                n_long += 1
            else:
                names.append(items[0])
                spk_embeds.append(items[2])
                inds.append(ind)
                sizes.append(sz)
    tot = ind + 1
    logger.info(
        (
            f"max_keep={max_keep}, min_keep={min_keep}, "
            f"loaded {len(names)}, skipped {n_short} short and {n_long} long, "
            f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
        )
    )
    return root, names, inds, tot, sizes, spk_embeds


def load_label(label_path, inds, tot):
    with open(label_path) as f:
        labels = [line.rstrip() for line in f]
        assert (
            len(labels) == tot
        ), f"number of labels does not match ({len(labels)} != {tot})"
        labels = [labels[i] for i in inds]
    return labels


def load_label_offset(label_path, inds, tot):
    with open(label_path) as f:
        code_lengths = [len(line.encode("utf-8")) for line in f]
        assert (
            len(code_lengths) == tot
        ), f"number of labels does not match ({len(code_lengths)} != {tot})"
        offsets = list(itertools.accumulate([0] + code_lengths))
        offsets = [(offsets[i], offsets[i + 1]) for i in inds]
    return offsets


def verify_label_lengths(
    audio_sizes,
    audio_rate,
    label_path,
    label_rate,
    inds,
    tot,
    tol=0.1,  # tolerance in seconds
):
    if label_rate < 0:
        logger.info(f"{label_path} is sequence label. skipped")
        return

    with open(label_path) as f:
        lengths = [len(line.rstrip().split()) for line in f]
        assert len(lengths) == tot
        lengths = [lengths[i] for i in inds]
    num_invalid = 0
    for i, ind in enumerate(inds):
        dur_from_audio = audio_sizes[i] / audio_rate
        dur_from_label = lengths[i] / label_rate
        if abs(dur_from_audio - dur_from_label) > tol:
            logger.warning(
                (
                    f"audio and label duration differ too much "
                    f"(|{dur_from_audio} - {dur_from_label}| > {tol}) "
                    f"in line {ind+1} of {label_path}. Check if `label_rate` "
                    f"is correctly set (currently {label_rate}). "
                    f"num. of samples = {audio_sizes[i]}; "
                    f"label length = {lengths[i]}"
                )
            )
            num_invalid += 1
    if num_invalid > 0:
        logger.warning(
            f"total {num_invalid} (audio, label) pairs with mismatched lengths"
        )


def logmelfilterbank(
    audio,
    sampling_rate,
    fft_size=1024,
    hop_size=256,
    win_length=None,
    window="hann",
    num_mels=80,
    fmin=80,
    fmax=7600,
    eps=1e-10,
):
    """Compute log-Mel filterbank feature. 
    (https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py)

    Args:
        audio (ndarray): Audio signal (T,).
        sampling_rate (int): Sampling rate.
        fft_size (int): FFT size.
        hop_size (int): Hop size.
        win_length (int): Window length. If set to None, it will be the same as fft_size.
        window (str): Window function type.
        num_mels (int): Number of mel basis.
        fmin (int): Minimum frequency in mel basis calculation.
        fmax (int): Maximum frequency in mel basis calculation.
        eps (float): Epsilon value to avoid inf in log calculation.

    Returns:
        ndarray: Log Mel filterbank feature (#frames, num_mels).

    """
    # get amplitude spectrogram
    x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size,
                          win_length=win_length, window=window, pad_mode="reflect")
    spc = np.abs(x_stft).T  # (#frames, #bins)

    # get mel basis
    fmin = 0 if fmin is None else fmin
    fmax = sampling_rate / 2 if fmax is None else fmax
    mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax)

    return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))


class SpeechPretrainDataset(FairseqDataset):
    def __init__(
        self,
        manifest_path: str,
        sample_rate: float,
        label_paths: List[str],
        label_rates: Union[List[float], float],  # -1 for sequence labels
        pad_list: List[str],
        eos_list: List[str],
        label_processors: Optional[List[Any]] = None,
        max_keep_sample_size: Optional[int] = None,
        min_keep_sample_size: Optional[int] = None,
        max_sample_size: Optional[int] = None,
        shuffle: bool = True,
        pad_audio: bool = False,
        normalize: bool = False,
        store_labels: bool = True,
        random_crop: bool = False,
        single_target: bool = False,
        reduction_factor: int = 1,
    ):
        self.audio_root, self.audio_names, inds, tot, self.sizes, self.spk_embeds = load_audio(
            manifest_path, max_keep_sample_size, min_keep_sample_size
        )
        self.sample_rate = sample_rate
        self.shuffle = shuffle
        self.random_crop = random_crop

        self.num_labels = len(label_paths)
        self.pad_list = pad_list
        self.eos_list = eos_list
        self.label_processors = label_processors
        self.single_target = single_target
        self.label_rates = (
            [label_rates for _ in range(len(label_paths))]
            if isinstance(label_rates, float)
            else label_rates
        )
        self.store_labels = store_labels
        if store_labels:
            self.label_list = [load_label(p, inds, tot) for p in label_paths]
        else:
            self.label_paths = label_paths
            self.label_offsets_list = [
                load_label_offset(p, inds, tot) for p in label_paths
            ]
        assert label_processors is None or len(label_processors) == self.num_labels
        for label_path, label_rate in zip(label_paths, self.label_rates):
            verify_label_lengths(
                self.sizes, sample_rate, label_path, label_rate, inds, tot
            )

        self.max_sample_size = (
            max_sample_size if max_sample_size is not None else sys.maxsize
        )
        self.pad_audio = pad_audio
        self.normalize = normalize
        self.reduction_factor = reduction_factor
        logger.info(
            f"pad_audio={pad_audio}, random_crop={random_crop}, reduction_factor={reduction_factor}, "
            f"normalize={normalize}, max_sample_size={self.max_sample_size}"
        )

    def get_audio(self, index):
        import soundfile as sf

        wav_path = os.path.join(self.audio_root, self.audio_names[index])
        wav, cur_sample_rate = sf.read(wav_path)
        wav = torch.from_numpy(wav).float()
        fbank = logmelfilterbank(
            wav.view(-1).cpu().numpy(), 16000
        )
        fbank = torch.from_numpy(fbank).float()
        wav = self.postprocess(wav, cur_sample_rate)
        return wav, fbank

    def get_label(self, index, label_idx):
        if self.store_labels:
            label = self.label_list[label_idx][index]
        else:
            with open(self.label_paths[label_idx]) as f:
                offset_s, offset_e = self.label_offsets_list[label_idx][index]
                f.seek(offset_s)
                label = f.read(offset_e - offset_s)

        if self.label_processors is not None:
            label = self.label_processors[label_idx](label)
        return label

    def get_labels(self, index):
        return [self.get_label(index, i) for i in range(self.num_labels)]

    def __getitem__(self, index):
        wav, fbank = self.get_audio(index)
        labels = self.get_labels(index)
        spkembs = get_features_or_waveform(
            os.path.join(self.audio_root, self.spk_embeds[index])
        )
        spkembs = torch.from_numpy(spkembs).float()
        return {"id": index, "source": wav, "target": fbank, "label_list": labels, 'spkembs': spkembs}

    def __len__(self):
        return len(self.sizes)

    def crop_to_max_size(self, wav, target_size):
        size = len(wav)
        diff = size - target_size
        if diff <= 0:
            return wav, 0

        start, end = 0, target_size
        if self.random_crop:
            start = np.random.randint(0, diff + 1)
            end = size - diff + start
        return wav[start:end], start

    def collater(self, samples):
        # target = max(sizes) -> random_crop not used
        # target = max_sample_size -> random_crop used for long
        samples = [s for s in samples if s["source"] is not None]
        if len(samples) == 0:
            return {}

        audios = [s["source"] for s in samples]
        audio_sizes = [len(s) for s in audios]

        fbanks = [s["target"] for s in samples]
        fbank_sizes = [len(s) for s in fbanks]
        
        if self.pad_audio:
            audio_size = min(max(audio_sizes), self.max_sample_size)
        else:
            audio_size = min(min(audio_sizes), self.max_sample_size)
        collated_audios, padding_mask, audio_starts = self.collater_audio(
            audios, audio_size
        )

        collated_fbanks = []
        collated_audios_size = []
        for i in range(len(fbanks)):
            fbank_start = int(audio_starts[i] / (audio_sizes[i] / fbank_sizes[i]))
            fbank_size = int(audio_size / (audio_sizes[i] / fbank_sizes[i]))
            fbank_end = min(fbank_start + fbank_size, fbank_sizes[i])
            collated_fbanks.append(fbanks[i][fbank_start : fbank_end])
            collated_audios_size.append(audio_size)
        collated_fbanks_size = [len(s) for s in collated_fbanks]
        collated_fbanks = _collate_frames(collated_fbanks)
        collated_fbanks_size = torch.tensor(collated_fbanks_size, dtype=torch.long)

        # thin out frames for reduction factor (B, Lmax, odim) ->  (B, Lmax//r, odim)
        if self.reduction_factor > 1:
            collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor]
            collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size])
        else:
            collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size

        prev_output_tokens = torch.cat(
            [collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1
        )

	    # make labels for stop prediction
        labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1))
        for i, l in enumerate(fbank_sizes):
            labels[i, l - 1 :] = 1.0

        spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True)

        targets_by_label = [
            [s["label_list"][i] for s in samples] for i in range(self.num_labels)
        ]
        targets_list, lengths_list, ntokens_list = self.collater_label(
            targets_by_label, audio_size, audio_starts
        )

        net_input = {
            "source": collated_audios, 
            "padding_mask": padding_mask, 
            "prev_output_tokens": prev_output_tokens,
            "spkembs": spkembs,
            "tgt_lengths": collated_fbanks_size_in,
        }

        batch = {
            "id": torch.LongTensor([s["id"] for s in samples]),
            "net_input": net_input,
            "labels": labels,
            "dec_target": collated_fbanks,
            "dec_target_lengths": collated_fbanks_size,
            "src_lengths": collated_audios_size,
            "task_name": 'speech_pretrain',
        }

        if self.single_target:
            batch["target_lengths"] = lengths_list[0]
            batch["ntokens"] = ntokens_list[0]
            batch["target"] = targets_list[0]
        else:
            batch["target_lengths_list"] = lengths_list
            batch["ntokens_list"] = ntokens_list
            batch["target_list"] = targets_list
        return batch

    def collater_audio(self, audios, audio_size):
        collated_audios = audios[0].new_zeros(len(audios), audio_size)
        padding_mask = (
            torch.BoolTensor(collated_audios.shape).fill_(False)
            # if self.pad_audio else None
        )
        audio_starts = [0 for _ in audios]
        for i, audio in enumerate(audios):
            diff = len(audio) - audio_size
            if diff == 0:
                collated_audios[i] = audio
            elif diff < 0:
                assert self.pad_audio
                collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)])
                padding_mask[i, diff:] = True
            else:
                collated_audios[i], audio_starts[i] = self.crop_to_max_size(
                    audio, audio_size
                )
        return collated_audios, padding_mask, audio_starts

    def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad):
        assert label_rate > 0
        s2f = label_rate / self.sample_rate
        frm_starts = [int(round(s * s2f)) for s in audio_starts]
        frm_size = int(round(audio_size * s2f))
        if not self.pad_audio:
            rem_size = [len(t) - s for t, s in zip(targets, frm_starts)]
            frm_size = min(frm_size, *rem_size)
        targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)]
        logger.debug(f"audio_starts={audio_starts}")
        logger.debug(f"frame_starts={frm_starts}")
        logger.debug(f"frame_size={frm_size}")

        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
        return targets, lengths, ntokens

    def collater_seq_label(self, targets, pad):
        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
        return targets, lengths, ntokens

    def collater_label(self, targets_by_label, audio_size, audio_starts):
        targets_list, lengths_list, ntokens_list = [], [], []
        itr = zip(targets_by_label, self.label_rates, self.pad_list)
        for targets, label_rate, pad in itr:
            if label_rate == -1.0:
                targets, lengths, ntokens = self.collater_seq_label(targets, pad)
            else:
                targets, lengths, ntokens = self.collater_frm_label(
                    targets, audio_size, audio_starts, label_rate, pad
                )
            targets_list.append(targets)
            lengths_list.append(lengths)
            ntokens_list.append(ntokens)
        return targets_list, lengths_list, ntokens_list

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        if self.pad_audio:
            return self.sizes[index]
        return min(self.sizes[index], self.max_sample_size)

    def ordered_indices(self):
        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        order.append(self.sizes)
        return np.lexsort(order)[::-1]

    def postprocess(self, wav, cur_sample_rate):
        if wav.dim() == 2:
            wav = wav.mean(-1)
        assert wav.dim() == 1, wav.dim()

        if cur_sample_rate != self.sample_rate:
            raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}")

        if self.normalize:
            with torch.no_grad():
                wav = F.layer_norm(wav, wav.shape)
        return wav