File size: 11,607 Bytes
14b7942
e531eef
 
 
 
14b7942
e531eef
 
b13e78c
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45fbc6f
e531eef
 
 
 
 
eefb8e0
e531eef
 
 
5fcb1be
 
 
e531eef
 
 
 
 
 
 
 
f1dc901
e531eef
b13e78c
 
f1dc901
 
 
e531eef
 
 
 
 
 
 
598330f
45fbc6f
 
 
2ded9f8
14f2401
598330f
 
 
 
 
 
2ded9f8
 
e531eef
 
14f2401
2ded9f8
e531eef
 
 
 
 
 
 
 
 
 
 
 
14f2401
2ded9f8
aee1475
e531eef
 
aee1475
e531eef
 
 
 
 
 
 
 
 
 
14f2401
e531eef
d3d989f
67da2ee
 
68f65b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c9591
ca6e0d5
 
 
 
d3d989f
ca6e0d5
 
 
 
 
 
 
 
d3d989f
 
 
ca6e0d5
 
 
 
 
 
 
 
 
 
 
 
67da2ee
e531eef
 
 
2ded9f8
aee1475
e531eef
 
aee1475
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ded9f8
 
 
 
67da2ee
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b9f5c
e531eef
 
 
 
 
 
16b9f5c
44c866a
16b9f5c
 
 
 
 
e531eef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import base64

import numpy as np
import streamlit as st
import streamlit.components.v1 as components
from streamlit_mic_recorder import mic_recorder

from utils import load_model, generate_response, bytes_to_array, start_server

def home_page():
    ## Set up home page Title
    col1, col2 = st.columns([1, 4])
    custom_html = """
    <div class="banner">
        <img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRhB2e_AhOe11wKxnnwOmOVg9E7J1MBgiTeYzzFAESwcCP5IbBAc2X8BwGChMfJzwqtVg&usqp=CAU" alt="Banner Image">
    </div>
    <style>
        .banner {
            width: 100%;
            height: 200px;
            overflow: visible;
        }
        .banner img {
            width: 100%;
            object-fit: cover;
        }
    </style>
    """
    with col1:
        components.html(custom_html)
    with col2: 
        st.write("# Welcome to MERaLiON-AudioLLM ChatBot πŸ€–")

    ## Set up home page other information
    st.markdown('')


def audio_llm():    
    with st.sidebar:
        st.divider()
        st.markdown("""<div class="sidebar-intro">
                    <p><strong>Purpose</strong>: Complex Audio Understanding</p>
                    <p><strong>Name</strong>: MERaLiON-AudioLLM-v1</p>
                    <p><strong>Version</strong>: Dec. 20, 2024</p>
                    </div>""", unsafe_allow_html=True)
    
    
    if st.sidebar.button('Clear History'):
        st.session_state.update(messages=[], 
                                on_upload=False, 
                                on_record=False, 
                                on_select=False, 
                                audio_array=np.array([]))   

    if "server" not in st.session_state:
        st.session_state.server = start_server()
    
    if "client" not in st.session_state or 'model_name' not in st.session_state:
        st.session_state.client, st.session_state.model_name = load_model()

    if "audio_array" not in st.session_state:
        st.session_state.audio_base64 = ''
        st.session_state.audio_array = np.array([])
    
    if "default_instruction" not in st.session_state: 
        st.session_state.default_instruction = ""

    st.markdown("<h1 style='text-align: center; color: black;'>MERaLiON-AudioLLM ChatBot πŸ€–</h1>", unsafe_allow_html=True)
    st.markdown("This demo is based on [MERaLiON-AudioLLM-Whisper-SEA-LION](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION), developed by I2R, A*STAR, in collaboration with AISG, Singapore.")

    st.markdown("**Step1: Specify Model Configuration**")
    col4, col5 = st.columns(2)

    with col4:
        st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature')

    with col5:
        st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p')

    st.markdown("**Step2: Specify Audio**")
    col1, col2, col3 = st.columns(3)
    
    with col2:
        st.markdown("Record Audio:")
        
        recording = mic_recorder(
            format="wav", 
            use_container_width=True, 
            callback=lambda: st.session_state.update(on_record=True, messages=[]),
            key='record')
        
        if recording and st.session_state.on_record:
            audio_bytes = recording["bytes"]
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)
    
    with col3:
        st.markdown("Upload Audio:")

        uploaded_file = st.file_uploader(
            label="**Upload Audio:**", 
            label_visibility="collapsed",
            type=['wav', 'mp3'],
            on_change=lambda: st.session_state.update(on_upload=True, messages=[]),
            key='upload'
        )
        
        if uploaded_file and st.session_state.on_upload:
            audio_bytes = uploaded_file.read()
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)

    with col1:
        audio_samples_w_instruct = {
            '1_ASR_IMDA_PART1_ASR_v2_141' : "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",   
            '7_ASR_IMDA_PART3_30_ASR_v2_2269': "- Need this talk written down, please.",
            '17_ASR_IMDA_PART6_30_ASR_v2_1413': "- Record the spoken word in text form.",
            
            '25_ST_COVOST2_ZH-CN_EN_ST_V2_4567': "- Please translate the given speech to English.",
            '26_ST_COVOST2_EN_ZH-CN_ST_V2_5422': "- Please translate the given speech to Chinese.",
            '30_SI_ALPACA-GPT4-AUDIO_SI_V2_1454': "- Please follow the instruction in the speech.",
            '31_SI_OPENHERMES-AUDIO_SI_V2_673': "- Please follow the instruction in the speech.",

            '32_SQA_CN_COLLEDGE_ENTRANCE_ENGLISH_TEST_SQA_V2_572': "- What does the man think the woman should do at 4:00?",
            '33_SQA_IMDA_PART3_30_SQA_V2_2310': "- Does Speaker2's wife cook for Speaker2 when they are at home?",
            '34_SQA_IMDA_PART3_30_SQA_V2_3621': "- Does the phrase \"#gai-gai#\" have a meaning in Chinese or Hokkien language?",
            '35_SQA_IMDA_PART3_30_SQA_V2_4062': "- What is the color of the vase mentioned in the dialogue?",
            '36_DS_IMDA_PART4_30_DS_V2_849': "- Condense the dialogue into a concise summary highlighting major topics and conclusions.",

            '39_Paralingual_IEMOCAP_ER_V2_91': "- Based on the speaker's speech patterns, what do you think they are feeling?",
            '40_Paralingual_IEMOCAP_ER_V2_567': "- Based on the speaker's speech patterns, what do you think they are feeling?",
            '42_Paralingual_IEMOCAP_GR_V2_320': "- Is it possible for you to identify whether the speaker in this recording is male or female?",
            '43_Paralingual_IEMOCAP_GR_V2_129': "- Is it possible for you to identify whether the speaker in this recording is male or female?",
            '45_Paralingual_IMDA_PART3_30_GR_V2_12312': "- So, who's speaking in the second part of the clip? \n\n- So, who's speaking in the first part of the clip?",
            '47_Paralingual_IMDA_PART3_30_NR_V2_10479': "- Can you guess which ethnic group this person is from based on their accent?",
            '49_Paralingual_MELD_ER_V2_676': "- What emotions do you think the speaker is expressing?",
            '50_Paralingual_MELD_ER_V2_692': "- Based on the speaker's speech patterns, what do you think they are feeling?",
            '51_Paralingual_VOXCELEB1_GR_V2_2148': "- May I know the gender of the speaker?",
            '53_Paralingual_VOXCELEB1_NR_V2_2286': "- What's the nationality identity of the speaker?",

            '55_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_2': "- What impact would the growth of the healthcare sector have on the country's economy in terms of employment and growth?",
            '56_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_415': "- Based on the statement, can you summarize the speaker's position on the recent controversial issues in Singapore?",
            '57_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_460': "- How does the author respond to parents' worries about masks in schools?",
            
            '2_ASR_IMDA_PART1_ASR_v2_2258': "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
            '3_ASR_IMDA_PART1_ASR_v2_2265': "- Turn the spoken language into a text format.",

            '4_ASR_IMDA_PART2_ASR_v2_999' : "- Translate the spoken words into text format.", 
            '5_ASR_IMDA_PART2_ASR_v2_2241': "- Translate the spoken words into text format.",
            '6_ASR_IMDA_PART2_ASR_v2_3409': "- Translate the spoken words into text format.",

            '8_ASR_IMDA_PART3_30_ASR_v2_1698': "- Need this talk written down, please.",
            '9_ASR_IMDA_PART3_30_ASR_v2_2474': "- Need this talk written down, please.",

            '11_ASR_IMDA_PART4_30_ASR_v2_3771': "- Write out the dialogue as text.",
            '12_ASR_IMDA_PART4_30_ASR_v2_103' : "- Write out the dialogue as text.",
            '10_ASR_IMDA_PART4_30_ASR_v2_1527': "- Write out the dialogue as text.",
            
            '13_ASR_IMDA_PART5_30_ASR_v2_1446': "- Translate this vocal recording into a textual format.",
            '14_ASR_IMDA_PART5_30_ASR_v2_2281': "- Translate this vocal recording into a textual format.",
            '15_ASR_IMDA_PART5_30_ASR_v2_4388': "- Translate this vocal recording into a textual format.",

            '16_ASR_IMDA_PART6_30_ASR_v2_576': "- Record the spoken word in text form.",
            '18_ASR_IMDA_PART6_30_ASR_v2_2834': "- Record the spoken word in text form.",

            '19_ASR_AIShell_zh_ASR_v2_5044': "- Transform the oral presentation into a text document.",
            '20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': "- Please provide a written transcription of the speech.",

            '27_ST_COVOST2_EN_ZH-CN_ST_V2_6697': "- Please translate the given speech to Chinese.",
            '28_SI_ALPACA-GPT4-AUDIO_SI_V2_299': "- Please follow the instruction in the speech.",
            '29_SI_ALPACA-GPT4-AUDIO_SI_V2_750': "- Please follow the instruction in the speech.",
        }
        
        audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()]
       
        st.markdown("Select From Examples:")
       
        sample_name = st.selectbox(
            label="**Select Audio:**",
            label_visibility="collapsed",
            options=audio_sample_names,
            index=None,
            placeholder="Select an audio sample:",
            on_change=lambda: st.session_state.update(on_select=True, messages=[]),
            key='select')
       
        if sample_name and st.session_state.on_select:
            audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read()
            st.session_state.default_instruction = audio_samples_w_instruct[sample_name]
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)
    
    st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000)
    st.session_state.update(on_upload=False, on_record=False, on_select=False)

    st.markdown("**Step 3: Input your Instruction**")
    if st.session_state.default_instruction:
        st.write("Example Instructions:")
        st.write(st.session_state.default_instruction)

    st.markdown(
        """
        <style>
            .st-emotion-cache-1c7y2kd {
                flex-direction: row-reverse;
                text-align: right;
            }
        </style>
    
        """,
        unsafe_allow_html=True,
    )

    if "messages" not in st.session_state:
        st.session_state.messages = []
    
    if prompt := st.chat_input(placeholder="Your Instruction"):
        with st.chat_message("user"):
            st.write(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})
    
        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                try:
                    stream = generate_response(prompt)
                    response = st.write_stream(stream)
                except Exception as e:
                    response = f"Caught Exception: {repr(e)}. Please contact the administrator to restart this space."
                    st.write(response)
                    raise(e)
                st.session_state.messages.append({"role": "assistant", "content": response})