Spaces:
Running
Running
File size: 11,607 Bytes
14b7942 e531eef 14b7942 e531eef b13e78c e531eef 45fbc6f e531eef eefb8e0 e531eef 5fcb1be e531eef f1dc901 e531eef b13e78c f1dc901 e531eef 598330f 45fbc6f 2ded9f8 14f2401 598330f 2ded9f8 e531eef 14f2401 2ded9f8 e531eef 14f2401 2ded9f8 aee1475 e531eef aee1475 e531eef 14f2401 e531eef d3d989f 67da2ee 68f65b3 49c9591 ca6e0d5 d3d989f ca6e0d5 d3d989f ca6e0d5 67da2ee e531eef 2ded9f8 aee1475 e531eef aee1475 e531eef 2ded9f8 67da2ee e531eef 16b9f5c e531eef 16b9f5c 44c866a 16b9f5c e531eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import base64
import numpy as np
import streamlit as st
import streamlit.components.v1 as components
from streamlit_mic_recorder import mic_recorder
from utils import load_model, generate_response, bytes_to_array, start_server
def home_page():
## Set up home page Title
col1, col2 = st.columns([1, 4])
custom_html = """
<div class="banner">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRhB2e_AhOe11wKxnnwOmOVg9E7J1MBgiTeYzzFAESwcCP5IbBAc2X8BwGChMfJzwqtVg&usqp=CAU" alt="Banner Image">
</div>
<style>
.banner {
width: 100%;
height: 200px;
overflow: visible;
}
.banner img {
width: 100%;
object-fit: cover;
}
</style>
"""
with col1:
components.html(custom_html)
with col2:
st.write("# Welcome to MERaLiON-AudioLLM ChatBot π€")
## Set up home page other information
st.markdown('')
def audio_llm():
with st.sidebar:
st.divider()
st.markdown("""<div class="sidebar-intro">
<p><strong>Purpose</strong>: Complex Audio Understanding</p>
<p><strong>Name</strong>: MERaLiON-AudioLLM-v1</p>
<p><strong>Version</strong>: Dec. 20, 2024</p>
</div>""", unsafe_allow_html=True)
if st.sidebar.button('Clear History'):
st.session_state.update(messages=[],
on_upload=False,
on_record=False,
on_select=False,
audio_array=np.array([]))
if "server" not in st.session_state:
st.session_state.server = start_server()
if "client" not in st.session_state or 'model_name' not in st.session_state:
st.session_state.client, st.session_state.model_name = load_model()
if "audio_array" not in st.session_state:
st.session_state.audio_base64 = ''
st.session_state.audio_array = np.array([])
if "default_instruction" not in st.session_state:
st.session_state.default_instruction = ""
st.markdown("<h1 style='text-align: center; color: black;'>MERaLiON-AudioLLM ChatBot π€</h1>", unsafe_allow_html=True)
st.markdown("This demo is based on [MERaLiON-AudioLLM-Whisper-SEA-LION](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION), developed by I2R, A*STAR, in collaboration with AISG, Singapore.")
st.markdown("**Step1: Specify Model Configuration**")
col4, col5 = st.columns(2)
with col4:
st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature')
with col5:
st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p')
st.markdown("**Step2: Specify Audio**")
col1, col2, col3 = st.columns(3)
with col2:
st.markdown("Record Audio:")
recording = mic_recorder(
format="wav",
use_container_width=True,
callback=lambda: st.session_state.update(on_record=True, messages=[]),
key='record')
if recording and st.session_state.on_record:
audio_bytes = recording["bytes"]
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
with col3:
st.markdown("Upload Audio:")
uploaded_file = st.file_uploader(
label="**Upload Audio:**",
label_visibility="collapsed",
type=['wav', 'mp3'],
on_change=lambda: st.session_state.update(on_upload=True, messages=[]),
key='upload'
)
if uploaded_file and st.session_state.on_upload:
audio_bytes = uploaded_file.read()
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
with col1:
audio_samples_w_instruct = {
'1_ASR_IMDA_PART1_ASR_v2_141' : "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
'7_ASR_IMDA_PART3_30_ASR_v2_2269': "- Need this talk written down, please.",
'17_ASR_IMDA_PART6_30_ASR_v2_1413': "- Record the spoken word in text form.",
'25_ST_COVOST2_ZH-CN_EN_ST_V2_4567': "- Please translate the given speech to English.",
'26_ST_COVOST2_EN_ZH-CN_ST_V2_5422': "- Please translate the given speech to Chinese.",
'30_SI_ALPACA-GPT4-AUDIO_SI_V2_1454': "- Please follow the instruction in the speech.",
'31_SI_OPENHERMES-AUDIO_SI_V2_673': "- Please follow the instruction in the speech.",
'32_SQA_CN_COLLEDGE_ENTRANCE_ENGLISH_TEST_SQA_V2_572': "- What does the man think the woman should do at 4:00?",
'33_SQA_IMDA_PART3_30_SQA_V2_2310': "- Does Speaker2's wife cook for Speaker2 when they are at home?",
'34_SQA_IMDA_PART3_30_SQA_V2_3621': "- Does the phrase \"#gai-gai#\" have a meaning in Chinese or Hokkien language?",
'35_SQA_IMDA_PART3_30_SQA_V2_4062': "- What is the color of the vase mentioned in the dialogue?",
'36_DS_IMDA_PART4_30_DS_V2_849': "- Condense the dialogue into a concise summary highlighting major topics and conclusions.",
'39_Paralingual_IEMOCAP_ER_V2_91': "- Based on the speaker's speech patterns, what do you think they are feeling?",
'40_Paralingual_IEMOCAP_ER_V2_567': "- Based on the speaker's speech patterns, what do you think they are feeling?",
'42_Paralingual_IEMOCAP_GR_V2_320': "- Is it possible for you to identify whether the speaker in this recording is male or female?",
'43_Paralingual_IEMOCAP_GR_V2_129': "- Is it possible for you to identify whether the speaker in this recording is male or female?",
'45_Paralingual_IMDA_PART3_30_GR_V2_12312': "- So, who's speaking in the second part of the clip? \n\n- So, who's speaking in the first part of the clip?",
'47_Paralingual_IMDA_PART3_30_NR_V2_10479': "- Can you guess which ethnic group this person is from based on their accent?",
'49_Paralingual_MELD_ER_V2_676': "- What emotions do you think the speaker is expressing?",
'50_Paralingual_MELD_ER_V2_692': "- Based on the speaker's speech patterns, what do you think they are feeling?",
'51_Paralingual_VOXCELEB1_GR_V2_2148': "- May I know the gender of the speaker?",
'53_Paralingual_VOXCELEB1_NR_V2_2286': "- What's the nationality identity of the speaker?",
'55_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_2': "- What impact would the growth of the healthcare sector have on the country's economy in terms of employment and growth?",
'56_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_415': "- Based on the statement, can you summarize the speaker's position on the recent controversial issues in Singapore?",
'57_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_460': "- How does the author respond to parents' worries about masks in schools?",
'2_ASR_IMDA_PART1_ASR_v2_2258': "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
'3_ASR_IMDA_PART1_ASR_v2_2265': "- Turn the spoken language into a text format.",
'4_ASR_IMDA_PART2_ASR_v2_999' : "- Translate the spoken words into text format.",
'5_ASR_IMDA_PART2_ASR_v2_2241': "- Translate the spoken words into text format.",
'6_ASR_IMDA_PART2_ASR_v2_3409': "- Translate the spoken words into text format.",
'8_ASR_IMDA_PART3_30_ASR_v2_1698': "- Need this talk written down, please.",
'9_ASR_IMDA_PART3_30_ASR_v2_2474': "- Need this talk written down, please.",
'11_ASR_IMDA_PART4_30_ASR_v2_3771': "- Write out the dialogue as text.",
'12_ASR_IMDA_PART4_30_ASR_v2_103' : "- Write out the dialogue as text.",
'10_ASR_IMDA_PART4_30_ASR_v2_1527': "- Write out the dialogue as text.",
'13_ASR_IMDA_PART5_30_ASR_v2_1446': "- Translate this vocal recording into a textual format.",
'14_ASR_IMDA_PART5_30_ASR_v2_2281': "- Translate this vocal recording into a textual format.",
'15_ASR_IMDA_PART5_30_ASR_v2_4388': "- Translate this vocal recording into a textual format.",
'16_ASR_IMDA_PART6_30_ASR_v2_576': "- Record the spoken word in text form.",
'18_ASR_IMDA_PART6_30_ASR_v2_2834': "- Record the spoken word in text form.",
'19_ASR_AIShell_zh_ASR_v2_5044': "- Transform the oral presentation into a text document.",
'20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': "- Please provide a written transcription of the speech.",
'27_ST_COVOST2_EN_ZH-CN_ST_V2_6697': "- Please translate the given speech to Chinese.",
'28_SI_ALPACA-GPT4-AUDIO_SI_V2_299': "- Please follow the instruction in the speech.",
'29_SI_ALPACA-GPT4-AUDIO_SI_V2_750': "- Please follow the instruction in the speech.",
}
audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()]
st.markdown("Select From Examples:")
sample_name = st.selectbox(
label="**Select Audio:**",
label_visibility="collapsed",
options=audio_sample_names,
index=None,
placeholder="Select an audio sample:",
on_change=lambda: st.session_state.update(on_select=True, messages=[]),
key='select')
if sample_name and st.session_state.on_select:
audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read()
st.session_state.default_instruction = audio_samples_w_instruct[sample_name]
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000)
st.session_state.update(on_upload=False, on_record=False, on_select=False)
st.markdown("**Step 3: Input your Instruction**")
if st.session_state.default_instruction:
st.write("Example Instructions:")
st.write(st.session_state.default_instruction)
st.markdown(
"""
<style>
.st-emotion-cache-1c7y2kd {
flex-direction: row-reverse;
text-align: right;
}
</style>
""",
unsafe_allow_html=True,
)
if "messages" not in st.session_state:
st.session_state.messages = []
if prompt := st.chat_input(placeholder="Your Instruction"):
with st.chat_message("user"):
st.write(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
try:
stream = generate_response(prompt)
response = st.write_stream(stream)
except Exception as e:
response = f"Caught Exception: {repr(e)}. Please contact the administrator to restart this space."
st.write(response)
raise(e)
st.session_state.messages.append({"role": "assistant", "content": response})
|