Spaces:
Running
Running
File size: 5,144 Bytes
8573823 89ed0ae 8573823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import re
import time
from typing import List, Dict, Optional
import numpy as np
import streamlit as st
from openai import OpenAI, APIConnectionError
from src.exceptions import TunnelNotRunningException
FIXED_GENERATION_CONFIG = dict(
max_completion_tokens=1024,
top_k=50,
length_penalty=1.0,
seed=42
)
MAX_AUDIO_LENGTH = 120
def load_model() -> Dict:
"""
Create an OpenAI client with connection to vllm server.
"""
openai_api_key = os.getenv('API_KEY')
local_ports = os.getenv('LOCAL_PORTS').split(" ")
name_to_client_mapper = {}
for port in local_ports:
client = OpenAI(
api_key=openai_api_key,
base_url=f"http://localhost:{port}/v1",
)
for model in client.models.list().data:
name_to_client_mapper[model.id] = client
return name_to_client_mapper
def prepare_multimodal_content(text_input, base64_audio_input):
return [
{
"type": "text",
"text": f"Text instruction: {text_input}"
},
{
"type": "audio_url",
"audio_url": {
"url": f"data:audio/ogg;base64,{base64_audio_input}"
},
},
]
def change_multimodal_content(
original_content,
text_input="",
base64_audio_input=""):
# Since python 3.7 dictionary is ordered.
if text_input:
original_content[0] = {
"type": "text",
"text": f"Text instruction: {text_input}"
}
if base64_audio_input:
original_content[1] = {
"type": "audio_url",
"audio_url": {
"url": f"data:audio/ogg;base64,{base64_audio_input}"
}
}
return original_content
def _retrive_response(
model: str,
text_input: str,
base64_audio_input: str,
history: Optional[List] = None,
**kwargs):
"""
Send request through OpenAI client.
"""
if history is None:
history = []
if base64_audio_input:
content = [
{
"type": "text",
"text": f"Text instruction: {text_input}"
},
{
"type": "audio_url",
"audio_url": {
"url": f"data:audio/ogg;base64,{base64_audio_input}"
},
},
]
else:
content = text_input
current_client = st.session_state.client_mapper[model]
return current_client.chat.completions.create(
messages=history + [{"role": "user", "content": content}],
model=model,
**kwargs
)
def _retry_retrive_response_throws_exception(retry=3, **kwargs):
try:
response_object = _retrive_response(**kwargs)
except APIConnectionError as e:
if not st.session_state.server.is_running():
if retry == 0:
raise TunnelNotRunningException()
st.toast(f":warning: Internet connection is down. Trying to re-establish connection ({retry}).")
if st.session_state.server.is_down():
st.session_state.server.restart()
elif st.session_state.server.is_starting():
time.sleep(2)
return _retry_retrive_response_throws_exception(retry-1, **kwargs)
raise e
return response_object
def _validate_input(text_input, array_audio_input) -> List[str]:
"""
TODO: improve the input validation regex.
"""
warnings = []
if re.search("tool|code|python|java|math|calculate", text_input):
warnings.append("WARNING: MERaLiON-AudioLLM is not intended for use in tool calling, math, and coding tasks.")
if re.search(r'[\u4e00-\u9fff]+', text_input):
warnings.append("NOTE: Please try to prompt in English for the best performance.")
if array_audio_input.shape[0] == 0:
warnings.append("NOTE: Please specify audio from examples or local files.")
if array_audio_input.shape[0] / 16000 > 30.0:
warnings.append((
"WARNING: MERaLiON-AudioLLM is trained to process audio up to **30 seconds**."
f" Audio longer than **{MAX_AUDIO_LENGTH} seconds** will be truncated."
))
return warnings
def retrive_response(
text_input: str,
array_audio_input: np.ndarray,
**kwargs
):
warnings = _validate_input(text_input, array_audio_input)
response_object, error_msg = None, ""
try:
response_object = _retry_retrive_response_throws_exception(
text_input=text_input,
**kwargs
)
except TunnelNotRunningException:
error_msg = "Internet connection cannot be established. Please contact the administrator."
except Exception as e:
error_msg = f"Caught Exception: {repr(e)}. Please contact the administrator."
return error_msg, warnings, response_object
def postprocess_voice_transcription(text):
text = re.sub("<.*>:?|\(.*\)|\[.*\]", "", text)
text = re.sub("\s+", " ", text).strip()
return text |