File size: 10,378 Bytes
6d0d847
7bbec6f
6d0d847
 
2115ef1
 
 
 
 
 
 
 
 
6d0d847
 
2115ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a00668
729da04
 
 
 
4a00668
2115ef1
6d0d847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ff547
 
 
 
 
6d0d847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b767f30
 
 
 
6d0d847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import streamlit as st
from app.draw_diagram import *

def dashboard():

    with st.container():
        st.title("SeaEval")
   
        st.markdown("""
            [gh]: https://github.com/SeaEval/SeaEval
            [![GitHub watchers](https://img.shields.io/github/watchers/SeaEval/SeaEval?style=social)][gh]
            [![GitHub Repo stars](https://img.shields.io/github/stars/SeaEval/SeaEval?style=social)][gh]
            """)

    seaeval_url = "https://seaeval.github.io/"

    st.divider()
    st.markdown("#### What is [SeaEval](%s)" % seaeval_url)

    with st.container():
        left_co, cent_co,last_co = st.columns(3)
        with cent_co:
            st.image("./style/seaeval_overall.png", 
                    #  caption="SeaEval data range", 
                    width=500)
        st.markdown('''

                    ''')
        st.markdown("##### A new benchmark for multilingual foundation models consisting of 28 dataset.")
        st.markdown(''':star: How models understand and reason with natural language?    
                    :balloon: Languages: English, Chinese, Malay, Spainish, Indonedian, Vietnamese, Filipino.
                    ''')
        
        st.markdown(''':star: How models comprehend cultural practices, nuances and values?    
                    :balloon: 4 new datasets on Cultural Understanding.
                    ''')

        st.markdown(''':star: How models perform across languages in terms of consistency?    
                    :balloon: 2 new datasets with curated metrics for Cross-Linugal Consistency.
                    ''')
    with st.container():
        left_co, cent_co,last_co = st.columns(3)
        with cent_co:
            st.image("./style/consistency.png", 
                    #  caption="SeaEval data range", 
                    width=500)
        st.markdown("##### Evaluation with enhanced cross-lingual capabilities.")
        st.markdown(''':star: How models perform according to different (paraphrased) instructions?    
                    :balloon: Each dataset is equipped with 5 different prompts to avoid randomness introduced by instructions,
                    which is non-negligible..
                    ''')
        
        st.markdown(''':star: Multilingual accuracy and performance consistency across languages.    
                    :balloon: If you can answer the question in your native language, can you answer the same question 
                    correctly in your second/third language?
                    ''')

    st.divider()
    with st.container():
        st.markdown("##### Citations")

        st.markdown('''
                    :round_pushpin: SeaEval Paper \n
                        @article{SeaEval,
                        title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
                        author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
                        journal={NAACL},
                        year={2024}
                        }
                    ''')

def cross_lingual_consistency():
    st.title("Cross-Lingual Consistency")
    
    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['Cross-MMLU', 'Cross-XQUAD', 'Cross-LogiQA']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}
    category_two_dict = {'Cross-MMLU': 'cross_mmlu', 
                         'Cross-XQUAD': 'cross_xquad', 
                         'Cross-LogiQA': 'cross_logiqa'}

    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with middle:
        sort = st.selectbox('Sort', ['Accuracy','Cross-Lingual Consistency', 'AC3',
                                     'English', 'Chinese', 'Spanish', 'Vietnamese'])
    with right:
        sorted = st.selectbox('by', ['Ascending', 'Descending'])

    if category_one or category_two or sort or sorted:
        category_one = category_one_dict[category_one]
        category_two = category_two_dict[category_two]
        
        draw_cross_lingual(category_one, category_two, sort, sorted)
    else:
        draw_cross_lingual('zero_shot', 'cross_mmlu', 'Accuracy', 'Descending')

def cultural_reasoning():
    st.title("Cultural Reasoning")

    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['SG EVAL', 
                        'SG EVAL V1 Cleaned',
                        'SG EVAL V2 MCQ',
                        'SG EVAL V2 Open Ended',
                        'CN EVAL', 'PH EVAL', 'US EVAL']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}

    left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with right:
        sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
    
    if category_one or category_two or sorted:
        category_one = category_one_dict[category_one]
        draw_only_acc('cultural_reasoning', category_one, category_two, sorted)
    else:
        draw_only_acc('cultural_reasoning', 'zero_shot', 'sg_eval', 'Descending')


def general_reasoning():
    st.title("General Reasoning")

    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['MMLU', 'C Eval', 'CMMLU', 'ZBench', 'IndoMMLU']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}

    left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with right:
        sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
    
    if category_one or category_two or sorted:
        category_one = category_one_dict[category_one]
        draw_only_acc('general_reasoning', category_one, category_two, sorted)
    else:
        draw_only_acc('general_reasoning', 'zero_shot', 'MMLU Full', 'Descending')

def flores():
    st.title("FLORES-Translation")

    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['Indonesian to English', 
                        'Vitenamese to English', 
                        'Chinese to English', 
                        'Malay to English']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}
    

    left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with right:
        sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
    
    if category_one or category_two or sorted:
        category_one = category_one_dict[category_one]
        draw_flores_translation(category_one, category_two, sorted)
    else:
        draw_flores_translation('zero_shot', 'Indonesian to English', 'Descending')

def emotion():
    st.title("Emotion")

    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['Indonesian Emotion  Classification', 'SST2']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}

    left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with right:
        sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
    
    if category_one or category_two or sorted:
        category_one = category_one_dict[category_one]
        draw_only_acc('emotion', category_one, category_two, sorted)
    else:
        draw_only_acc('emotion', 'zero_shot', 'Indonesian Emotion  Classification', 'Descending')

def dialogue():
    st.title("Dialogue")

    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['DREAM', 'SAMSum', 'DialogSum']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}

    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with middle:
        if category_two == 'DREAM':
            sort = st.selectbox('Sort', ['Accuracy'])
        else:
            sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
    
    with right:
        sorted = st.selectbox('by', ['Ascending', 'Descending'])
    
    if category_one or category_two or sort or sorted:
        category_one = category_one_dict[category_one]
        draw_dialogue(category_one, category_two, sort, sorted)
    else:
        draw_dialogue('zero_shot', 'DREAM', sort[0],'Descending')

def fundamental_nlp_tasks():
    st.title("Fundamental NLP Tasks")

    filters_levelone = ['Zero Shot', 'Few Shot']
    filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
    
    category_one_dict = {'Zero Shot': 'zero_shot', 
                         'Few Shot': 'few_shot'}

    left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
    with left:
        category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
    with center:
        category_two = st.selectbox('Select the sub-category', filters_leveltwo)
    with right:
        sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
    
    if category_one or category_two or sorted:
        category_one = category_one_dict[category_one]
        draw_only_acc('fundamental_nlp_tasks', category_one, category_two, sorted)
    else:
        draw_only_acc('fundamental_nlp_tasks', 'zero_shot', 'OCNLI', 'Descending')