Spaces:
Running
Running
File size: 10,378 Bytes
6d0d847 7bbec6f 6d0d847 2115ef1 6d0d847 2115ef1 4a00668 729da04 4a00668 2115ef1 6d0d847 c7ff547 6d0d847 b767f30 6d0d847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import streamlit as st
from app.draw_diagram import *
def dashboard():
with st.container():
st.title("SeaEval")
st.markdown("""
[gh]: https://github.com/SeaEval/SeaEval
[![GitHub watchers](https://img.shields.io/github/watchers/SeaEval/SeaEval?style=social)][gh]
[![GitHub Repo stars](https://img.shields.io/github/stars/SeaEval/SeaEval?style=social)][gh]
""")
seaeval_url = "https://seaeval.github.io/"
st.divider()
st.markdown("#### What is [SeaEval](%s)" % seaeval_url)
with st.container():
left_co, cent_co,last_co = st.columns(3)
with cent_co:
st.image("./style/seaeval_overall.png",
# caption="SeaEval data range",
width=500)
st.markdown('''
''')
st.markdown("##### A new benchmark for multilingual foundation models consisting of 28 dataset.")
st.markdown(''':star: How models understand and reason with natural language?
:balloon: Languages: English, Chinese, Malay, Spainish, Indonedian, Vietnamese, Filipino.
''')
st.markdown(''':star: How models comprehend cultural practices, nuances and values?
:balloon: 4 new datasets on Cultural Understanding.
''')
st.markdown(''':star: How models perform across languages in terms of consistency?
:balloon: 2 new datasets with curated metrics for Cross-Linugal Consistency.
''')
with st.container():
left_co, cent_co,last_co = st.columns(3)
with cent_co:
st.image("./style/consistency.png",
# caption="SeaEval data range",
width=500)
st.markdown("##### Evaluation with enhanced cross-lingual capabilities.")
st.markdown(''':star: How models perform according to different (paraphrased) instructions?
:balloon: Each dataset is equipped with 5 different prompts to avoid randomness introduced by instructions,
which is non-negligible..
''')
st.markdown(''':star: Multilingual accuracy and performance consistency across languages.
:balloon: If you can answer the question in your native language, can you answer the same question
correctly in your second/third language?
''')
st.divider()
with st.container():
st.markdown("##### Citations")
st.markdown('''
:round_pushpin: SeaEval Paper \n
@article{SeaEval,
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
journal={NAACL},
year={2024}
}
''')
def cross_lingual_consistency():
st.title("Cross-Lingual Consistency")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['Cross-MMLU', 'Cross-XQUAD', 'Cross-LogiQA']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {'Cross-MMLU': 'cross_mmlu',
'Cross-XQUAD': 'cross_xquad',
'Cross-LogiQA': 'cross_logiqa'}
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with middle:
sort = st.selectbox('Sort', ['Accuracy','Cross-Lingual Consistency', 'AC3',
'English', 'Chinese', 'Spanish', 'Vietnamese'])
with right:
sorted = st.selectbox('by', ['Ascending', 'Descending'])
if category_one or category_two or sort or sorted:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw_cross_lingual(category_one, category_two, sort, sorted)
else:
draw_cross_lingual('zero_shot', 'cross_mmlu', 'Accuracy', 'Descending')
def cultural_reasoning():
st.title("Cultural Reasoning")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['SG EVAL',
'SG EVAL V1 Cleaned',
'SG EVAL V2 MCQ',
'SG EVAL V2 Open Ended',
'CN EVAL', 'PH EVAL', 'US EVAL']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with right:
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
if category_one or category_two or sorted:
category_one = category_one_dict[category_one]
draw_only_acc('cultural_reasoning', category_one, category_two, sorted)
else:
draw_only_acc('cultural_reasoning', 'zero_shot', 'sg_eval', 'Descending')
def general_reasoning():
st.title("General Reasoning")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['MMLU', 'C Eval', 'CMMLU', 'ZBench', 'IndoMMLU']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with right:
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
if category_one or category_two or sorted:
category_one = category_one_dict[category_one]
draw_only_acc('general_reasoning', category_one, category_two, sorted)
else:
draw_only_acc('general_reasoning', 'zero_shot', 'MMLU Full', 'Descending')
def flores():
st.title("FLORES-Translation")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['Indonesian to English',
'Vitenamese to English',
'Chinese to English',
'Malay to English']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with right:
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
if category_one or category_two or sorted:
category_one = category_one_dict[category_one]
draw_flores_translation(category_one, category_two, sorted)
else:
draw_flores_translation('zero_shot', 'Indonesian to English', 'Descending')
def emotion():
st.title("Emotion")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['Indonesian Emotion Classification', 'SST2']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with right:
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
if category_one or category_two or sorted:
category_one = category_one_dict[category_one]
draw_only_acc('emotion', category_one, category_two, sorted)
else:
draw_only_acc('emotion', 'zero_shot', 'Indonesian Emotion Classification', 'Descending')
def dialogue():
st.title("Dialogue")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['DREAM', 'SAMSum', 'DialogSum']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with middle:
if category_two == 'DREAM':
sort = st.selectbox('Sort', ['Accuracy'])
else:
sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
with right:
sorted = st.selectbox('by', ['Ascending', 'Descending'])
if category_one or category_two or sort or sorted:
category_one = category_one_dict[category_one]
draw_dialogue(category_one, category_two, sort, sorted)
else:
draw_dialogue('zero_shot', 'DREAM', sort[0],'Descending')
def fundamental_nlp_tasks():
st.title("Fundamental NLP Tasks")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
with left:
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
with center:
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
with right:
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
if category_one or category_two or sorted:
category_one = category_one_dict[category_one]
draw_only_acc('fundamental_nlp_tasks', category_one, category_two, sorted)
else:
draw_only_acc('fundamental_nlp_tasks', 'zero_shot', 'OCNLI', 'Descending') |