Spaces:
Running
Running
File size: 29,427 Bytes
049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc 4ceaa06 049dcfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
from functools import partial
import json
import gradio as gr
import pandas as pd
print("Loading datasets...")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def add_rank(df, compute_average=True):
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Params)", "Embedding Dimensions", "Sequence Length"]]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
if compute_average:
df.insert(1, "Average", df[cols_to_rank].mean(axis=1, skipna=False))
df.sort_values("Average", ascending=False, inplace=True)
else:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
# Fill NaN after averaging
df.fillna("", inplace=True)
return df
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return (
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
with open('all_results.json', 'r') as f:
ALL_RESULTS = json.load(f)
MODEL_LIST = list(ALL_RESULTS.keys())
NUM_MODELS = len(set(MODEL_LIST))
MODEL_TO_SIZE = {model: ALL_RESULTS[model]["model_size"] for model in MODEL_LIST}
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_data_cross_mmlu_overall(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['cross_mmlu'][res] for res in ALL_RESULTS[model][eval_mode]['cross_mmlu']]
try:
overall_acc = [results['overall_acc'] for results in results_list]
overall_acc = sum(overall_acc) / len(overall_acc)
consistency_score_3 = [results['consistency_score_3'] for results in results_list]
consistency_score_3 = sum(consistency_score_3) / len(consistency_score_3)
AC3_3 = [results['AC3_3'] for results in results_list]
AC3_3 = sum(AC3_3) / len(AC3_3)
except:
print(results_list)
consistency_score_3 = -1
overall_acc = -1
AC3_3 = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"AC3": AC3_3,
"Cross-Lingual Consistency": consistency_score_3,
"Accuracy": overall_acc,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=False)
if fillna:
df.fillna("", inplace=True)
return df
CROSS_MMLU_ZERO_SHOT_OVERALL = get_data_cross_mmlu_overall(eval_mode="zero_shot")
CROSS_MMLU_FIVE_SHOT_OVERALL = get_data_cross_mmlu_overall(eval_mode="five_shot")
def get_data_cross_mmlu_language(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['cross_mmlu'][res] for res in ALL_RESULTS[model][eval_mode]['cross_mmlu']]
try:
English = [results['language_acc']['English'] for results in results_list]
Vietnamese = [results['language_acc']['Vietnamese'] for results in results_list]
Chinese = [results['language_acc']['Chinese'] for results in results_list]
Indonesian = [results['language_acc']['Indonesian'] for results in results_list]
Filipino = [results['language_acc']['Filipino'] for results in results_list]
Spanish = [results['language_acc']['Spanish'] for results in results_list]
Malay = [results['language_acc']['Malay'] for results in results_list]
English = sum(English) / len(English)
Vietnamese = sum(Vietnamese) / len(Vietnamese)
Chinese = sum(Chinese) / len(Chinese)
Indonesian = sum(Indonesian) / len(Indonesian)
Filipino = sum(Filipino) / len(Filipino)
Spanish = sum(Spanish) / len(Spanish)
Malay = sum(Malay) / len(Malay)
except:
print(results_list)
English = -1
Vietnamese = -1
Chinese = -1
Indonesian = -1
Filipino = -1
Spanish = -1
Malay = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"English": English,
"Vietnamese": Vietnamese,
"Chinese": Chinese,
"Indonesian": Indonesian,
"Filipino": Filipino,
"Spanish": Spanish,
"Malay": Malay,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=True)
if fillna:
df.fillna("", inplace=True)
return df
CROSS_MMLU_ZERO_SHOT_LANGUAGE = get_data_cross_mmlu_language(eval_mode="zero_shot")
CROSS_MMLU_FIVE_SHOT_LANGUAGE = get_data_cross_mmlu_language(eval_mode="five_shot")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_data_cross_logiqa_overall(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['cross_logiqa'][res] for res in ALL_RESULTS[model][eval_mode]['cross_logiqa']]
try:
overall_acc = [results['overall_acc'] for results in results_list]
overall_acc = sum(overall_acc) / len(overall_acc)
consistency_score_3 = [results['consistency_score_3'] for results in results_list]
consistency_score_3 = sum(consistency_score_3) / len(consistency_score_3)
AC3_3 = [results['AC3_3'] for results in results_list]
AC3_3 = sum(AC3_3) / len(AC3_3)
except:
print(results_list)
consistency_score_3 = -1
overall_acc = -1
AC3_3 = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"AC3": AC3_3,
"Cross-Lingual Consistency": consistency_score_3,
"Accuracy": overall_acc,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=False)
if fillna:
df.fillna("", inplace=True)
return df
CROSS_LOGIQA_ZERO_SHOT_OVERALL = get_data_cross_logiqa_overall(eval_mode="zero_shot")
CROSS_LOGIQA_FIVE_SHOT_OVERALL = get_data_cross_logiqa_overall(eval_mode="five_shot")
def get_data_cross_logiqa_language(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['cross_logiqa'][res] for res in ALL_RESULTS[model][eval_mode]['cross_logiqa']]
try:
English = [results['language_acc']['English'] for results in results_list]
Vietnamese = [results['language_acc']['Vietnamese'] for results in results_list]
Chinese = [results['language_acc']['Chinese'] for results in results_list]
Indonesian = [results['language_acc']['Indonesian'] for results in results_list]
Filipino = [results['language_acc']['Filipino'] for results in results_list]
Spanish = [results['language_acc']['Spanish'] for results in results_list]
Malay = [results['language_acc']['Malay'] for results in results_list]
English = sum(English) / len(English)
Vietnamese = sum(Vietnamese) / len(Vietnamese)
Chinese = sum(Chinese) / len(Chinese)
Indonesian = sum(Indonesian) / len(Indonesian)
Filipino = sum(Filipino) / len(Filipino)
Spanish = sum(Spanish) / len(Spanish)
Malay = sum(Malay) / len(Malay)
except:
print(results_list)
English = -1
Vietnamese = -1
Chinese = -1
Indonesian = -1
Filipino = -1
Spanish = -1
Malay = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"English": English,
"Vietnamese": Vietnamese,
"Chinese": Chinese,
"Indonesian": Indonesian,
"Filipino": Filipino,
"Spanish": Spanish,
"Malay": Malay,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=True)
if fillna:
df.fillna("", inplace=True)
return df
CROSS_LOGIQA_ZERO_SHOT_LANGUAGE = get_data_cross_logiqa_language(eval_mode="zero_shot")
CROSS_LOGIQA_FIVE_SHOT_LANGUAGE = get_data_cross_logiqa_language(eval_mode="five_shot")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_data_sg_eval(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['sg_eval'][res] for res in ALL_RESULTS[model][eval_mode]['sg_eval']]
try:
accuracy = [results['accuracy'] for results in results_list]
accuracy = sum(accuracy) / len(accuracy)
except:
print(results_list)
accuracy = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"Accuracy": accuracy,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=True)
if fillna:
df.fillna("", inplace=True)
return df
SG_EVAL_ZERO_SHOT = get_data_sg_eval(eval_mode="zero_shot")
SG_EVAL_FIVE_SHOT = get_data_sg_eval(eval_mode="five_shot")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_data_us_eval(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['us_eval'][res] for res in ALL_RESULTS[model][eval_mode]['us_eval']]
try:
accuracy = [results['accuracy'] for results in results_list]
accuracy = sum(accuracy) / len(accuracy)
except:
print(results_list)
accuracy = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"Accuracy": accuracy,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=True)
if fillna:
df.fillna("", inplace=True)
return df
US_EVAL_ZERO_SHOT = get_data_us_eval(eval_mode="zero_shot")
US_EVAL_FIVE_SHOT = get_data_us_eval(eval_mode="five_shot")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_data_cn_eval(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['cn_eval'][res] for res in ALL_RESULTS[model][eval_mode]['cn_eval']]
try:
accuracy = [results['accuracy'] for results in results_list]
accuracy = sum(accuracy) / len(accuracy)
except:
print(results_list)
accuracy = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"Accuracy": accuracy,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=True)
if fillna:
df.fillna("", inplace=True)
return df
CN_EVAL_ZERO_SHOT = get_data_cn_eval(eval_mode="zero_shot")
CN_EVAL_FIVE_SHOT = get_data_cn_eval(eval_mode="five_shot")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_data_ph_eval(eval_mode='zero_shot', fillna=True, rank=True):
df_list = []
for model in MODEL_LIST:
results_list = [ALL_RESULTS[model][eval_mode]['ph_eval'][res] for res in ALL_RESULTS[model][eval_mode]['ph_eval']]
try:
accuracy = [results['accuracy'] for results in results_list]
accuracy = sum(accuracy) / len(accuracy)
except:
print(results_list)
accuracy = -1
res = {
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
"Accuracy": accuracy,
}
df_list.append(res)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
#cols = sorted(list(df.columns))
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if rank:
df = add_rank(df, compute_average=True)
if fillna:
df.fillna("", inplace=True)
return df
PH_EVAL_ZERO_SHOT = get_data_ph_eval(eval_mode="zero_shot")
PH_EVAL_FIVE_SHOT = get_data_ph_eval(eval_mode="five_shot")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
block = gr.Blocks()
with block:
gr.Markdown(f"""
SeaEval Leaderboard. To submit, refer to the <a href="https://seaeval.github.io/" target="_blank" style="text-decoration: underline">SeaEval Website</a> Refer to the [SeaEval paper](https://arxiv.org/abs/2309.04766) for details on metrics, tasks and models.
- **Total Datasets**: 31
- **Total Languages**: 8
- **Total Models**: {NUM_MODELS}
""")
with gr.Tabs():
# dataset 1: cross-mmlu
with gr.TabItem("Cross-MMLU"):
with gr.Row():
gr.Markdown("""
**Cross-MMLU Leaderboard** ๐ฎ
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
""")
with gr.TabItem("zero_shot"):
with gr.TabItem("Overall"):
with gr.Row():
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
CROSS_MMLU_ZERO_SHOT_OVERALL,
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_OVERALL.columns),
type="pandas",
)
with gr.TabItem("Language Performance"):
with gr.Row():
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
CROSS_MMLU_ZERO_SHOT_LANGUAGE,
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_LANGUAGE.columns),
type="pandas",
)
with gr.TabItem("five_shot"):
with gr.TabItem("Overall"):
with gr.Row():
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
CROSS_MMLU_FIVE_SHOT_OVERALL,
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_OVERALL.columns),
type="pandas",
)
with gr.TabItem("Language Performance"):
with gr.Row():
gr.components.Dataframe(
CROSS_MMLU_FIVE_SHOT_LANGUAGE,
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_LANGUAGE.columns),
type="pandas",
)
# dataset 2: cross-logiqa
with gr.TabItem("Cross-LogiQA"):
with gr.Row():
gr.Markdown("""
**Cross-LogiQA Leaderboard** ๐ฎ
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
""")
with gr.TabItem("zero_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
CROSS_LOGIQA_ZERO_SHOT_OVERALL,
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_ZERO_SHOT_OVERALL.columns),
type="pandas",
)
with gr.TabItem("Language Performance"):
with gr.Row():
gr.components.Dataframe(
CROSS_LOGIQA_ZERO_SHOT_LANGUAGE,
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_ZERO_SHOT_LANGUAGE.columns),
type="pandas",
)
with gr.TabItem("five_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
CROSS_LOGIQA_FIVE_SHOT_OVERALL,
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_FIVE_SHOT_OVERALL.columns),
type="pandas",
)
with gr.TabItem("Language Performance"):
with gr.Row():
gr.components.Dataframe(
CROSS_LOGIQA_FIVE_SHOT_LANGUAGE,
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_FIVE_SHOT_LANGUAGE.columns),
type="pandas",
)
# dataset 3: SG_EVAL
with gr.TabItem("SG_EVAL"):
with gr.Row():
gr.Markdown("""
**SG_EVAL Leaderboard** ๐ฎ
- **Metric:** Accuracy
- **Languages:** English
""")
with gr.TabItem("zero_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
SG_EVAL_ZERO_SHOT,
datatype=["number", "markdown"] + ["number"] * len(SG_EVAL_ZERO_SHOT.columns),
type="pandas",
)
with gr.TabItem("five_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
SG_EVAL_FIVE_SHOT,
datatype=["number", "markdown"] + ["number"] * len(SG_EVAL_FIVE_SHOT.columns),
type="pandas",
)
# dataset 4:
with gr.TabItem("US_EVAL"):
with gr.Row():
gr.Markdown("""
**US_EVAL Leaderboard** ๐ฎ
- **Metric:** Accuracy
- **Languages:** English
""")
with gr.TabItem("zero_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
US_EVAL_ZERO_SHOT,
datatype=["number", "markdown"] + ["number"] * len(US_EVAL_ZERO_SHOT.columns),
type="pandas",
)
with gr.TabItem("five_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
US_EVAL_FIVE_SHOT,
datatype=["number", "markdown"] + ["number"] * len(US_EVAL_FIVE_SHOT.columns),
type="pandas",
)
# dataset 5:
with gr.TabItem("CN_EVAL"):
with gr.Row():
gr.Markdown("""
**CN_EVAL Leaderboard** ๐ฎ
- **Metric:** Accuracy
- **Languages:** Chinese
""")
with gr.TabItem("zero_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
CN_EVAL_ZERO_SHOT,
datatype=["number", "markdown"] + ["number"] * len(CN_EVAL_ZERO_SHOT.columns),
type="pandas",
)
with gr.TabItem("five_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
CN_EVAL_FIVE_SHOT,
datatype=["number", "markdown"] + ["number"] * len(CN_EVAL_FIVE_SHOT.columns),
type="pandas",
)
# dataset 6:
with gr.TabItem("PH_EVAL"):
with gr.Row():
gr.Markdown("""
**PH_EVAL Leaderboard** ๐ฎ
- **Metric:** Accuracy
- **Languages:** English
""")
with gr.TabItem("zero_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
PH_EVAL_ZERO_SHOT,
datatype=["number", "markdown"] + ["number"] * len(PH_EVAL_ZERO_SHOT.columns),
type="pandas",
)
with gr.TabItem("five_shot"):
with gr.TabItem("Overall"):
with gr.Row():
gr.components.Dataframe(
PH_EVAL_ZERO_SHOT,
datatype=["number", "markdown"] + ["number"] * len(PH_EVAL_ZERO_SHOT.columns),
type="pandas",
)
gr.Markdown(r"""
If this work is useful to you, please citing our work:
```bibtex
@article{SeaEval2023,
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
journal={arXiv preprint arXiv:2309.04766},
year={2023}
}
```
""")
# Running the functions on page load in addition to when the button is clicked
# This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab
"""
block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
"""
block.queue(max_size=10)
block.launch(server_name="0.0.0.0", share=True)
# Possible changes:
# Could add graphs / other visual content
# Could add verification marks
# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/
|