Spaces:
Running
Running
new format
Browse files
app.py
CHANGED
@@ -38,19 +38,12 @@ def make_clickable_model(model_name, link=None):
|
|
38 |
|
39 |
|
40 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
with open('all_results.json', 'r') as f:
|
46 |
ALL_RESULTS = json.load(f)
|
47 |
|
48 |
-
|
49 |
MODEL_LIST = list(ALL_RESULTS.keys())
|
50 |
NUM_MODELS = len(set(MODEL_LIST))
|
51 |
MODEL_TO_SIZE = {model: ALL_RESULTS[model]["model_size"] for model in MODEL_LIST}
|
52 |
-
|
53 |
-
|
54 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
55 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
56 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
@@ -1966,8 +1959,68 @@ MRPC_FIVE_SHOT = get_data_mrpc(eval_mode="five_shot")
|
|
1966 |
|
1967 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1968 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1969 |
|
1970 |
-
block = gr.Blocks()
|
1971 |
with block:
|
1972 |
|
1973 |
gr.Markdown(f"""
|
@@ -1979,1054 +2032,954 @@ with block:
|
|
1979 |
- **Mode of Evaluation**: Zero-Shot, Five-Shot
|
1980 |
|
1981 |
The following table shows the performance of the models on the SeaEval benchmark.
|
|
|
1982 |
|
1983 |
""")
|
1984 |
|
1985 |
-
with gr.Tabs():
|
1986 |
-
|
1987 |
-
|
1988 |
-
# dataset 1: cross-mmlu
|
1989 |
-
with gr.TabItem("Cross-MMLU"):
|
1990 |
-
with gr.Row():
|
1991 |
-
gr.Markdown("""
|
1992 |
-
**Cross-MMLU Leaderboard** 🔮
|
1993 |
-
|
1994 |
-
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
|
1995 |
-
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
|
1996 |
-
""")
|
1997 |
-
|
1998 |
-
with gr.TabItem("zero_shot"):
|
1999 |
-
|
2000 |
-
|
2001 |
-
with gr.TabItem("Overall"):
|
2002 |
-
|
2003 |
-
with gr.Row():
|
2004 |
-
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2005 |
-
CROSS_MMLU_ZERO_SHOT_OVERALL,
|
2006 |
-
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_OVERALL.columns),
|
2007 |
-
type="pandas",
|
2008 |
-
)
|
2009 |
-
|
2010 |
-
|
2011 |
-
with gr.TabItem("Language Performance"):
|
2012 |
-
|
2013 |
-
with gr.Row():
|
2014 |
-
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2015 |
-
CROSS_MMLU_ZERO_SHOT_LANGUAGE,
|
2016 |
-
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_LANGUAGE.columns),
|
2017 |
-
type="pandas",
|
2018 |
-
)
|
2019 |
-
|
2020 |
-
|
2021 |
-
with gr.TabItem("five_shot"):
|
2022 |
-
|
2023 |
-
|
2024 |
-
with gr.TabItem("Overall"):
|
2025 |
-
|
2026 |
-
with gr.Row():
|
2027 |
-
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2028 |
-
CROSS_MMLU_FIVE_SHOT_OVERALL,
|
2029 |
-
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_OVERALL.columns),
|
2030 |
-
type="pandas",
|
2031 |
-
)
|
2032 |
|
2033 |
|
2034 |
-
|
2035 |
-
|
2036 |
-
|
2037 |
-
|
2038 |
-
|
2039 |
-
|
2040 |
-
|
2041 |
-
|
2042 |
-
|
2043 |
-
|
2044 |
-
|
2045 |
-
|
2046 |
-
|
2047 |
-
|
2048 |
-
|
2049 |
-
|
2050 |
-
|
2051 |
-
|
2052 |
-
|
2053 |
-
|
2054 |
-
|
2055 |
-
|
2056 |
-
|
2057 |
-
|
2058 |
-
|
2059 |
-
|
2060 |
-
|
2061 |
-
|
2062 |
-
|
2063 |
-
|
2064 |
-
|
2065 |
-
|
2066 |
-
|
2067 |
-
|
2068 |
-
|
2069 |
-
|
2070 |
-
|
2071 |
-
|
2072 |
-
|
2073 |
-
|
2074 |
-
|
2075 |
-
|
2076 |
-
|
2077 |
-
|
2078 |
-
|
2079 |
-
|
2080 |
-
|
2081 |
-
|
2082 |
-
|
2083 |
-
|
2084 |
-
|
2085 |
-
|
2086 |
-
|
2087 |
-
|
2088 |
-
)
|
2089 |
-
|
2090 |
-
|
2091 |
-
|
2092 |
-
|
2093 |
-
|
2094 |
-
|
2095 |
-
|
2096 |
-
|
2097 |
-
|
2098 |
-
|
2099 |
-
|
2100 |
-
|
2101 |
-
|
2102 |
-
|
2103 |
-
|
2104 |
-
|
2105 |
-
|
2106 |
-
|
2107 |
-
|
2108 |
-
|
2109 |
-
|
2110 |
-
|
2111 |
-
|
2112 |
-
|
2113 |
-
|
2114 |
-
|
2115 |
-
|
2116 |
-
|
2117 |
-
|
2118 |
-
|
2119 |
-
|
2120 |
-
|
2121 |
-
|
2122 |
-
|
2123 |
-
|
2124 |
-
|
2125 |
-
|
2126 |
-
|
2127 |
-
|
2128 |
-
|
2129 |
-
|
2130 |
-
|
2131 |
-
|
2132 |
-
|
2133 |
-
|
2134 |
-
|
2135 |
-
|
2136 |
-
|
2137 |
-
|
2138 |
-
|
2139 |
-
|
2140 |
-
|
2141 |
-
|
2142 |
-
|
2143 |
-
|
2144 |
-
|
2145 |
-
|
2146 |
-
|
2147 |
-
|
2148 |
-
|
2149 |
-
|
2150 |
-
|
2151 |
-
|
2152 |
-
|
2153 |
-
|
2154 |
-
|
2155 |
-
|
2156 |
-
|
2157 |
-
|
2158 |
-
|
2159 |
-
|
2160 |
-
|
2161 |
-
|
2162 |
-
|
2163 |
-
|
2164 |
-
|
2165 |
-
|
2166 |
-
|
2167 |
-
|
2168 |
-
|
2169 |
-
|
2170 |
-
|
2171 |
-
|
2172 |
-
|
2173 |
-
|
2174 |
-
|
2175 |
-
|
2176 |
-
|
2177 |
-
|
2178 |
-
|
2179 |
-
|
2180 |
-
|
2181 |
-
|
2182 |
-
|
2183 |
-
|
2184 |
-
|
2185 |
-
|
2186 |
-
|
2187 |
-
|
2188 |
-
|
2189 |
-
|
2190 |
-
|
2191 |
-
|
2192 |
-
|
2193 |
-
|
2194 |
-
|
2195 |
-
|
2196 |
-
|
2197 |
-
|
2198 |
-
|
2199 |
-
|
2200 |
-
|
2201 |
-
|
2202 |
-
|
2203 |
-
|
2204 |
-
|
2205 |
-
|
2206 |
-
|
2207 |
-
|
2208 |
-
|
2209 |
-
|
2210 |
-
|
2211 |
-
|
2212 |
-
|
2213 |
-
|
2214 |
-
|
2215 |
-
|
2216 |
-
|
2217 |
-
|
2218 |
-
|
2219 |
-
|
2220 |
-
|
2221 |
-
|
2222 |
-
|
2223 |
-
|
2224 |
-
|
2225 |
-
|
2226 |
-
|
2227 |
-
|
2228 |
-
|
2229 |
-
|
2230 |
-
|
2231 |
-
|
2232 |
-
|
2233 |
-
|
2234 |
-
|
2235 |
-
|
2236 |
-
|
2237 |
-
|
2238 |
-
|
2239 |
-
|
2240 |
-
|
2241 |
-
|
2242 |
-
|
2243 |
-
|
2244 |
-
)
|
2245 |
-
|
2246 |
-
|
2247 |
-
|
2248 |
-
|
2249 |
-
|
2250 |
-
|
2251 |
-
|
2252 |
-
|
2253 |
-
|
2254 |
-
|
2255 |
-
|
2256 |
-
|
2257 |
-
|
2258 |
-
|
2259 |
-
|
2260 |
-
|
2261 |
-
|
2262 |
-
|
2263 |
-
|
2264 |
-
|
2265 |
-
|
2266 |
-
|
2267 |
-
|
2268 |
-
|
2269 |
-
|
2270 |
-
|
2271 |
-
|
2272 |
-
|
2273 |
-
|
2274 |
-
|
2275 |
-
|
2276 |
-
|
2277 |
-
|
2278 |
-
|
2279 |
-
|
2280 |
-
|
2281 |
-
|
2282 |
-
)
|
2283 |
-
|
2284 |
-
|
2285 |
-
|
2286 |
-
|
2287 |
-
|
2288 |
-
gr.
|
2289 |
-
|
2290 |
-
|
2291 |
-
|
2292 |
-
|
2293 |
-
|
2294 |
-
|
2295 |
-
|
2296 |
-
|
2297 |
-
|
2298 |
-
|
2299 |
-
|
2300 |
-
|
2301 |
-
|
2302 |
-
)
|
2303 |
-
|
2304 |
-
|
2305 |
-
|
2306 |
-
|
2307 |
-
|
2308 |
-
|
2309 |
-
|
2310 |
-
|
2311 |
-
|
2312 |
-
|
2313 |
-
|
2314 |
-
|
2315 |
-
|
2316 |
-
|
2317 |
-
|
2318 |
-
|
2319 |
-
|
2320 |
-
|
2321 |
-
|
2322 |
-
|
2323 |
-
|
2324 |
-
|
2325 |
-
|
2326 |
-
|
2327 |
-
|
2328 |
-
|
2329 |
-
|
2330 |
-
|
2331 |
-
|
2332 |
-
|
2333 |
-
|
2334 |
-
|
2335 |
-
|
2336 |
-
|
2337 |
-
|
2338 |
-
|
2339 |
-
|
2340 |
-
|
2341 |
-
|
2342 |
-
|
2343 |
-
|
2344 |
-
|
2345 |
-
|
2346 |
-
|
2347 |
-
|
2348 |
-
|
2349 |
-
|
2350 |
-
|
2351 |
-
|
2352 |
-
|
2353 |
-
|
2354 |
-
|
2355 |
-
with gr.TabItem("
|
2356 |
-
with gr.TabItem("
|
2357 |
-
with gr.
|
2358 |
-
gr.
|
2359 |
-
|
2360 |
-
|
2361 |
-
|
2362 |
-
|
2363 |
-
|
2364 |
-
|
2365 |
-
|
2366 |
-
|
2367 |
-
|
2368 |
-
|
2369 |
-
|
2370 |
-
|
2371 |
-
|
2372 |
-
|
2373 |
-
|
2374 |
-
|
2375 |
-
|
2376 |
-
|
2377 |
-
|
2378 |
-
|
2379 |
-
|
2380 |
-
|
2381 |
-
|
2382 |
-
|
2383 |
-
|
2384 |
-
|
2385 |
-
|
2386 |
-
|
2387 |
-
|
2388 |
-
|
2389 |
-
|
2390 |
-
|
2391 |
-
|
2392 |
-
|
2393 |
-
|
2394 |
-
|
2395 |
-
|
2396 |
-
|
2397 |
-
|
2398 |
-
|
2399 |
-
|
2400 |
-
|
2401 |
-
|
2402 |
-
|
2403 |
-
|
2404 |
-
|
2405 |
-
|
2406 |
-
|
2407 |
-
|
2408 |
-
|
2409 |
-
|
2410 |
-
|
2411 |
-
""
|
2412 |
-
|
2413 |
-
|
2414 |
-
|
2415 |
-
|
2416 |
-
|
2417 |
-
|
2418 |
-
|
2419 |
-
|
2420 |
-
|
2421 |
-
|
2422 |
-
|
2423 |
-
|
2424 |
-
|
2425 |
-
|
2426 |
-
|
2427 |
-
|
2428 |
-
|
2429 |
-
|
2430 |
-
|
2431 |
-
|
2432 |
-
|
2433 |
-
|
2434 |
-
|
2435 |
-
|
2436 |
-
|
2437 |
-
|
2438 |
-
|
2439 |
-
|
2440 |
-
|
2441 |
-
|
2442 |
-
|
2443 |
-
|
2444 |
-
|
2445 |
-
|
2446 |
-
|
2447 |
-
|
2448 |
-
|
2449 |
-
|
2450 |
-
|
2451 |
-
|
2452 |
-
|
2453 |
-
|
2454 |
-
|
2455 |
-
|
2456 |
-
|
2457 |
-
|
2458 |
-
|
2459 |
-
|
2460 |
-
|
2461 |
-
|
2462 |
-
|
2463 |
-
|
2464 |
-
|
2465 |
-
|
2466 |
-
|
2467 |
-
|
2468 |
-
|
2469 |
-
|
2470 |
-
|
2471 |
-
|
2472 |
-
|
2473 |
-
|
2474 |
-
|
2475 |
-
|
2476 |
-
|
2477 |
-
|
2478 |
-
|
2479 |
-
|
2480 |
-
|
2481 |
-
|
2482 |
-
|
2483 |
-
|
2484 |
-
|
2485 |
-
|
2486 |
-
|
2487 |
-
|
2488 |
-
|
2489 |
-
|
2490 |
-
|
2491 |
-
|
2492 |
-
|
2493 |
-
|
2494 |
-
|
2495 |
-
|
2496 |
-
|
2497 |
-
|
2498 |
-
|
2499 |
-
|
2500 |
-
|
2501 |
-
|
2502 |
-
|
2503 |
-
|
2504 |
-
|
2505 |
-
|
2506 |
-
|
2507 |
-
|
2508 |
-
|
2509 |
-
|
2510 |
-
|
2511 |
-
|
2512 |
-
|
2513 |
-
|
2514 |
-
|
2515 |
-
|
2516 |
-
|
2517 |
-
|
2518 |
-
|
2519 |
-
|
2520 |
-
|
2521 |
-
|
2522 |
-
|
2523 |
-
|
2524 |
-
|
2525 |
-
|
2526 |
-
|
2527 |
-
|
2528 |
-
|
2529 |
-
|
2530 |
-
|
2531 |
-
|
2532 |
-
""
|
2533 |
-
|
2534 |
-
|
2535 |
-
|
2536 |
-
|
2537 |
-
|
2538 |
-
|
2539 |
-
|
2540 |
-
|
2541 |
-
|
2542 |
-
|
2543 |
-
|
2544 |
-
|
2545 |
-
|
2546 |
-
|
2547 |
-
|
2548 |
-
|
2549 |
-
|
2550 |
-
|
2551 |
-
|
2552 |
-
|
2553 |
-
|
2554 |
-
|
2555 |
-
|
2556 |
-
|
2557 |
-
|
2558 |
-
|
2559 |
-
|
2560 |
-
|
2561 |
-
|
2562 |
-
|
2563 |
-
|
2564 |
-
|
2565 |
-
|
2566 |
-
|
2567 |
-
|
2568 |
-
|
2569 |
-
|
2570 |
-
|
2571 |
-
|
2572 |
-
|
2573 |
-
|
2574 |
-
|
2575 |
-
|
2576 |
-
|
2577 |
-
|
2578 |
-
|
2579 |
-
|
2580 |
-
|
2581 |
-
|
2582 |
-
)
|
2583 |
-
|
2584 |
-
|
2585 |
-
|
2586 |
-
|
2587 |
-
|
2588 |
-
gr.
|
2589 |
-
|
2590 |
-
|
2591 |
-
|
2592 |
-
|
2593 |
-
|
2594 |
-
|
2595 |
-
|
2596 |
-
with gr.
|
2597 |
-
|
2598 |
-
|
2599 |
-
|
2600 |
-
|
2601 |
-
|
2602 |
-
|
2603 |
-
|
2604 |
-
|
2605 |
-
|
2606 |
-
with gr.TabItem("
|
2607 |
-
with gr.TabItem("
|
2608 |
-
with gr.
|
2609 |
-
gr.
|
2610 |
-
|
2611 |
-
|
2612 |
-
|
2613 |
-
|
2614 |
-
|
2615 |
-
|
2616 |
-
|
2617 |
-
|
2618 |
-
|
2619 |
-
|
2620 |
-
|
2621 |
-
|
2622 |
-
|
2623 |
-
|
2624 |
-
|
2625 |
-
|
2626 |
-
|
2627 |
-
|
2628 |
-
|
2629 |
-
|
2630 |
-
|
2631 |
-
|
2632 |
-
|
2633 |
-
|
2634 |
-
|
2635 |
-
|
2636 |
-
|
2637 |
-
with gr.TabItem("
|
2638 |
-
with gr.TabItem("
|
2639 |
-
with gr.
|
2640 |
-
gr.
|
2641 |
-
|
2642 |
-
|
2643 |
-
|
2644 |
-
|
2645 |
-
|
2646 |
-
|
2647 |
-
|
2648 |
-
|
2649 |
-
|
2650 |
-
|
2651 |
-
|
2652 |
-
|
2653 |
-
|
2654 |
-
|
2655 |
-
|
2656 |
-
|
2657 |
-
|
2658 |
-
|
2659 |
-
|
2660 |
-
|
2661 |
-
|
2662 |
-
|
2663 |
-
|
2664 |
-
|
2665 |
-
|
2666 |
-
|
2667 |
-
|
2668 |
-
|
2669 |
-
|
2670 |
-
|
2671 |
-
|
2672 |
-
|
2673 |
-
|
2674 |
-
)
|
2675 |
-
|
2676 |
-
|
2677 |
-
|
2678 |
-
|
2679 |
-
|
2680 |
-
gr.
|
2681 |
-
|
2682 |
-
|
2683 |
-
|
2684 |
-
|
2685 |
-
|
2686 |
-
|
2687 |
-
|
2688 |
-
|
2689 |
-
|
2690 |
-
|
2691 |
-
|
2692 |
-
|
2693 |
-
|
2694 |
-
|
2695 |
-
|
2696 |
-
|
2697 |
-
|
2698 |
-
|
2699 |
-
with gr.TabItem("
|
2700 |
-
with gr.
|
2701 |
-
gr.
|
2702 |
-
|
2703 |
-
|
2704 |
-
|
2705 |
-
|
2706 |
-
|
2707 |
-
|
2708 |
-
|
2709 |
-
|
2710 |
-
|
2711 |
-
|
2712 |
-
|
2713 |
-
|
2714 |
-
|
2715 |
-
|
2716 |
-
|
2717 |
-
|
2718 |
-
|
2719 |
-
|
2720 |
-
|
2721 |
-
|
2722 |
-
|
2723 |
-
|
2724 |
-
)
|
2725 |
-
|
2726 |
-
|
2727 |
-
|
2728 |
-
|
2729 |
-
|
2730 |
-
|
2731 |
-
|
2732 |
-
|
2733 |
-
|
2734 |
-
|
2735 |
-
|
2736 |
-
|
2737 |
-
|
2738 |
-
|
2739 |
-
|
2740 |
-
|
2741 |
-
|
2742 |
-
|
2743 |
-
|
2744 |
-
|
2745 |
-
|
2746 |
-
|
2747 |
-
|
2748 |
-
|
2749 |
-
|
2750 |
-
|
2751 |
-
|
2752 |
-
|
2753 |
-
|
2754 |
-
|
2755 |
-
|
2756 |
-
|
2757 |
-
|
2758 |
-
|
2759 |
-
|
2760 |
-
|
2761 |
-
|
2762 |
-
|
2763 |
-
|
2764 |
-
|
2765 |
-
|
2766 |
-
|
2767 |
-
|
2768 |
-
|
2769 |
-
|
2770 |
-
|
2771 |
-
|
2772 |
-
|
2773 |
-
|
2774 |
-
|
2775 |
-
|
2776 |
-
|
2777 |
-
|
2778 |
-
""
|
2779 |
-
|
2780 |
-
|
2781 |
-
|
2782 |
-
|
2783 |
-
|
2784 |
-
|
2785 |
-
|
2786 |
-
|
2787 |
-
|
2788 |
-
|
2789 |
-
|
2790 |
-
|
2791 |
-
|
2792 |
-
|
2793 |
-
|
2794 |
-
|
2795 |
-
|
2796 |
-
|
2797 |
-
|
2798 |
-
|
2799 |
-
|
2800 |
-
|
2801 |
-
|
2802 |
-
|
2803 |
-
|
2804 |
-
|
2805 |
-
|
2806 |
-
|
2807 |
-
|
2808 |
-
|
2809 |
-
|
2810 |
-
|
2811 |
-
|
2812 |
-
|
2813 |
-
|
2814 |
-
|
2815 |
-
|
2816 |
-
|
2817 |
-
|
2818 |
-
|
2819 |
-
|
2820 |
-
|
2821 |
-
|
2822 |
-
|
2823 |
-
|
2824 |
-
|
2825 |
-
|
2826 |
-
|
2827 |
-
|
2828 |
-
|
2829 |
-
|
2830 |
-
|
2831 |
-
|
2832 |
-
|
2833 |
-
|
2834 |
-
|
2835 |
-
|
2836 |
-
|
2837 |
-
|
2838 |
-
|
2839 |
-
|
2840 |
-
""
|
2841 |
-
|
2842 |
-
|
2843 |
-
|
2844 |
-
|
2845 |
-
|
2846 |
-
|
2847 |
-
|
2848 |
-
|
2849 |
-
|
2850 |
-
|
2851 |
-
|
2852 |
-
|
2853 |
-
|
2854 |
-
|
2855 |
-
|
2856 |
-
|
2857 |
-
|
2858 |
-
|
2859 |
-
|
2860 |
-
|
2861 |
-
|
2862 |
-
|
2863 |
-
|
2864 |
-
|
2865 |
-
|
2866 |
-
|
2867 |
-
|
2868 |
-
|
2869 |
-
|
2870 |
-
|
2871 |
-
|
2872 |
-
|
2873 |
-
|
2874 |
-
|
2875 |
-
|
2876 |
-
|
2877 |
-
|
2878 |
-
|
2879 |
-
|
2880 |
-
|
2881 |
-
|
2882 |
-
|
2883 |
-
|
2884 |
-
|
2885 |
-
|
2886 |
-
|
2887 |
-
|
2888 |
-
|
2889 |
-
|
2890 |
-
|
2891 |
-
|
2892 |
-
|
2893 |
-
|
2894 |
-
|
2895 |
-
|
2896 |
-
|
2897 |
-
|
2898 |
-
|
2899 |
-
|
2900 |
-
|
2901 |
-
|
2902 |
-
|
2903 |
-
|
2904 |
-
|
2905 |
-
|
2906 |
-
|
2907 |
-
|
2908 |
-
|
2909 |
-
|
2910 |
-
|
2911 |
-
|
2912 |
-
|
2913 |
-
|
2914 |
-
|
2915 |
-
|
2916 |
-
|
2917 |
-
|
2918 |
-
|
2919 |
-
|
2920 |
-
|
2921 |
-
|
2922 |
-
|
2923 |
-
|
2924 |
-
|
2925 |
-
|
2926 |
-
|
2927 |
-
|
2928 |
-
|
2929 |
-
|
2930 |
-
|
2931 |
-
|
2932 |
-
|
2933 |
-
|
2934 |
-
|
2935 |
-
|
2936 |
-
|
2937 |
-
|
2938 |
-
|
2939 |
-
|
2940 |
-
|
2941 |
-
|
2942 |
-
|
2943 |
-
|
2944 |
-
|
2945 |
-
|
2946 |
-
|
2947 |
-
|
2948 |
-
|
2949 |
-
|
2950 |
-
|
2951 |
-
|
2952 |
-
|
2953 |
-
)
|
2954 |
-
|
2955 |
-
|
2956 |
-
|
2957 |
-
|
2958 |
-
|
2959 |
-
gr.
|
2960 |
-
|
2961 |
-
|
2962 |
-
|
2963 |
-
|
2964 |
-
|
2965 |
-
|
2966 |
-
with gr.TabItem("zero_shot"):
|
2967 |
-
with gr.TabItem("Overall"):
|
2968 |
-
with gr.Row():
|
2969 |
-
gr.components.Dataframe(
|
2970 |
-
RTE_ZERO_SHOT,
|
2971 |
-
datatype=["number", "markdown"] + ["number"] * len(RTE_ZERO_SHOT.columns),
|
2972 |
-
type="pandas",
|
2973 |
-
)
|
2974 |
-
|
2975 |
-
|
2976 |
-
|
2977 |
-
with gr.TabItem("five_shot"):
|
2978 |
-
with gr.TabItem("Overall"):
|
2979 |
-
with gr.Row():
|
2980 |
-
gr.components.Dataframe(
|
2981 |
-
RTE_FIVE_SHOT,
|
2982 |
-
datatype=["number", "markdown"] + ["number"] * len(RTE_FIVE_SHOT.columns),
|
2983 |
-
type="pandas",
|
2984 |
-
)
|
2985 |
-
|
2986 |
-
|
2987 |
-
# dataset
|
2988 |
-
with gr.TabItem("MRPC"):
|
2989 |
-
with gr.Row():
|
2990 |
-
gr.Markdown("""
|
2991 |
-
**MRPC Leaderboard** 🔮
|
2992 |
-
|
2993 |
-
- **Metric:** Accuracy.
|
2994 |
-
- **Languages:** English
|
2995 |
-
""")
|
2996 |
-
|
2997 |
-
with gr.TabItem("zero_shot"):
|
2998 |
-
with gr.TabItem("Overall"):
|
2999 |
-
with gr.Row():
|
3000 |
-
gr.components.Dataframe(
|
3001 |
-
MRPC_ZERO_SHOT,
|
3002 |
-
datatype=["number", "markdown"] + ["number"] * len(MRPC_ZERO_SHOT.columns),
|
3003 |
-
type="pandas",
|
3004 |
-
)
|
3005 |
-
|
3006 |
-
|
3007 |
-
|
3008 |
-
with gr.TabItem("five_shot"):
|
3009 |
-
with gr.TabItem("Overall"):
|
3010 |
-
with gr.Row():
|
3011 |
-
gr.components.Dataframe(
|
3012 |
-
MRPC_FIVE_SHOT,
|
3013 |
-
datatype=["number", "markdown"] + ["number"] * len(MRPC_FIVE_SHOT.columns),
|
3014 |
-
type="pandas",
|
3015 |
-
)
|
3016 |
-
|
3017 |
|
3018 |
|
3019 |
gr.Markdown(r"""
|
3020 |
-
|
3021 |
-
If this work is useful to you, please citing our work:
|
3022 |
-
|
3023 |
```bibtex
|
3024 |
@article{SeaEval2023,
|
3025 |
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
3026 |
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
3027 |
journal={arXiv preprint arXiv:2309.04766},
|
3028 |
-
year={2023}
|
3029 |
-
}
|
3030 |
```
|
3031 |
""")
|
3032 |
# Running the functions on page load in addition to when the button is clicked
|
@@ -3035,8 +2988,12 @@ with block:
|
|
3035 |
block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
|
3036 |
"""
|
3037 |
|
|
|
|
|
|
|
|
|
3038 |
block.queue(max_size=10)
|
3039 |
-
block.launch(server_name="0.0.0.0", share=
|
3040 |
|
3041 |
|
3042 |
# Possible changes:
|
|
|
38 |
|
39 |
|
40 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
|
|
|
|
|
|
|
|
41 |
with open('all_results.json', 'r') as f:
|
42 |
ALL_RESULTS = json.load(f)
|
43 |
|
|
|
44 |
MODEL_LIST = list(ALL_RESULTS.keys())
|
45 |
NUM_MODELS = len(set(MODEL_LIST))
|
46 |
MODEL_TO_SIZE = {model: ALL_RESULTS[model]["model_size"] for model in MODEL_LIST}
|
|
|
|
|
47 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
48 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
49 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
|
|
1959 |
|
1960 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1961 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1962 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1963 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1964 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1965 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1966 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1967 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1968 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1969 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1970 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1971 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1972 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1973 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1974 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1975 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1976 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1977 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1978 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1979 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1980 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1981 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1982 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1983 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1984 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1985 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1986 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1987 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1988 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1989 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1990 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1991 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1992 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1993 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1994 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1995 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1996 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1997 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1998 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1999 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2000 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2001 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2002 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2003 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2004 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2005 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2006 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2007 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2008 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2009 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2010 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2011 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2012 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2013 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2014 |
+
|
2015 |
+
# block = gr.Blocks(theme=gr.themes.Soft())
|
2016 |
+
|
2017 |
+
theme = gr.themes.Soft().set(
|
2018 |
+
background_fill_primary='*secondary_50'
|
2019 |
+
)
|
2020 |
+
|
2021 |
+
block = gr.Blocks(theme='finlaymacklon/smooth_slate')
|
2022 |
+
|
2023 |
|
|
|
2024 |
with block:
|
2025 |
|
2026 |
gr.Markdown(f"""
|
|
|
2032 |
- **Mode of Evaluation**: Zero-Shot, Five-Shot
|
2033 |
|
2034 |
The following table shows the performance of the models on the SeaEval benchmark.
|
2035 |
+
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
2036 |
|
2037 |
""")
|
2038 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2039 |
|
2040 |
|
2041 |
+
with gr.Tabs():
|
2042 |
+
|
2043 |
+
|
2044 |
+
with gr.TabItem("Cross-Lingual Consistency"):
|
2045 |
+
|
2046 |
+
# dataset 1: cross-mmlu
|
2047 |
+
with gr.TabItem("Cross-MMLU"):
|
2048 |
+
with gr.TabItem("Zero Shot"):
|
2049 |
+
with gr.TabItem("Overall"):
|
2050 |
+
with gr.Row():
|
2051 |
+
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2052 |
+
CROSS_MMLU_ZERO_SHOT_OVERALL,
|
2053 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_OVERALL.columns),
|
2054 |
+
type="pandas",
|
2055 |
+
)
|
2056 |
+
with gr.TabItem("Language Performance"):
|
2057 |
+
|
2058 |
+
with gr.Row():
|
2059 |
+
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2060 |
+
CROSS_MMLU_ZERO_SHOT_LANGUAGE,
|
2061 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_LANGUAGE.columns),
|
2062 |
+
type="pandas",
|
2063 |
+
)
|
2064 |
+
with gr.TabItem("Five Shot"):
|
2065 |
+
with gr.TabItem("Overall"):
|
2066 |
+
|
2067 |
+
with gr.Row():
|
2068 |
+
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2069 |
+
CROSS_MMLU_FIVE_SHOT_OVERALL,
|
2070 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_OVERALL.columns),
|
2071 |
+
type="pandas",
|
2072 |
+
)
|
2073 |
+
with gr.TabItem("Language Performance"):
|
2074 |
+
|
2075 |
+
with gr.Row():
|
2076 |
+
gr.components.Dataframe(
|
2077 |
+
CROSS_MMLU_FIVE_SHOT_LANGUAGE,
|
2078 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_LANGUAGE.columns),
|
2079 |
+
type="pandas",
|
2080 |
+
)
|
2081 |
+
|
2082 |
+
with gr.Row():
|
2083 |
+
gr.Markdown("""
|
2084 |
+
**Cross-MMLU Leaderboard** 🔮
|
2085 |
+
|
2086 |
+
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
|
2087 |
+
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
|
2088 |
+
""")
|
2089 |
+
|
2090 |
+
|
2091 |
+
# dataset 2: cross-logiqa
|
2092 |
+
with gr.TabItem("Cross-LogiQA"):
|
2093 |
+
with gr.TabItem("Zero Shot"):
|
2094 |
+
with gr.TabItem("Overall"):
|
2095 |
+
with gr.Row():
|
2096 |
+
gr.components.Dataframe(
|
2097 |
+
CROSS_LOGIQA_ZERO_SHOT_OVERALL,
|
2098 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_ZERO_SHOT_OVERALL.columns),
|
2099 |
+
type="pandas",
|
2100 |
+
)
|
2101 |
+
with gr.TabItem("Language Performance"):
|
2102 |
+
|
2103 |
+
with gr.Row():
|
2104 |
+
gr.components.Dataframe(
|
2105 |
+
CROSS_LOGIQA_ZERO_SHOT_LANGUAGE,
|
2106 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_ZERO_SHOT_LANGUAGE.columns),
|
2107 |
+
type="pandas",
|
2108 |
+
)
|
2109 |
+
with gr.TabItem("Five Shot"):
|
2110 |
+
with gr.TabItem("Overall"):
|
2111 |
+
with gr.Row():
|
2112 |
+
gr.components.Dataframe(
|
2113 |
+
CROSS_LOGIQA_FIVE_SHOT_OVERALL,
|
2114 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_FIVE_SHOT_OVERALL.columns),
|
2115 |
+
type="pandas",
|
2116 |
+
)
|
2117 |
+
with gr.TabItem("Language Performance"):
|
2118 |
+
with gr.Row():
|
2119 |
+
gr.components.Dataframe(
|
2120 |
+
CROSS_LOGIQA_FIVE_SHOT_LANGUAGE,
|
2121 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_FIVE_SHOT_LANGUAGE.columns),
|
2122 |
+
type="pandas",
|
2123 |
+
)
|
2124 |
+
with gr.Row():
|
2125 |
+
gr.Markdown("""
|
2126 |
+
**Cross-LogiQA Leaderboard** 🔮
|
2127 |
+
|
2128 |
+
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
|
2129 |
+
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
|
2130 |
+
""")
|
2131 |
+
|
2132 |
+
|
2133 |
+
|
2134 |
+
with gr.TabItem("Cultural Reasoning and Understanding"):
|
2135 |
+
|
2136 |
+
# dataset 3: SG_EVAL
|
2137 |
+
with gr.TabItem("SG_EVAL"):
|
2138 |
+
with gr.TabItem("Zero Shot"):
|
2139 |
+
with gr.TabItem("Overall"):
|
2140 |
+
with gr.Row():
|
2141 |
+
gr.components.Dataframe(
|
2142 |
+
SG_EVAL_ZERO_SHOT,
|
2143 |
+
datatype=["number", "markdown"] + ["number"] * len(SG_EVAL_ZERO_SHOT.columns),
|
2144 |
+
type="pandas",
|
2145 |
+
)
|
2146 |
+
with gr.TabItem("Five Shot"):
|
2147 |
+
with gr.TabItem("Overall"):
|
2148 |
+
with gr.Row():
|
2149 |
+
gr.components.Dataframe(
|
2150 |
+
SG_EVAL_FIVE_SHOT,
|
2151 |
+
datatype=["number", "markdown"] + ["number"] * len(SG_EVAL_FIVE_SHOT.columns),
|
2152 |
+
type="pandas",
|
2153 |
+
)
|
2154 |
+
with gr.Row():
|
2155 |
+
gr.Markdown("""
|
2156 |
+
**SG_EVAL Leaderboard** 🔮
|
2157 |
+
|
2158 |
+
- **Metric:** Accuracy
|
2159 |
+
- **Languages:** English
|
2160 |
+
""")
|
2161 |
+
|
2162 |
+
|
2163 |
+
|
2164 |
+
|
2165 |
+
# dataset 4:
|
2166 |
+
with gr.TabItem("US_EVAL"):
|
2167 |
+
with gr.TabItem("Zero Shot"):
|
2168 |
+
with gr.TabItem("Overall"):
|
2169 |
+
with gr.Row():
|
2170 |
+
gr.components.Dataframe(
|
2171 |
+
US_EVAL_ZERO_SHOT,
|
2172 |
+
datatype=["number", "markdown"] + ["number"] * len(US_EVAL_ZERO_SHOT.columns),
|
2173 |
+
type="pandas",
|
2174 |
+
)
|
2175 |
+
with gr.TabItem("Five Shot"):
|
2176 |
+
with gr.TabItem("Overall"):
|
2177 |
+
with gr.Row():
|
2178 |
+
gr.components.Dataframe(
|
2179 |
+
US_EVAL_FIVE_SHOT,
|
2180 |
+
datatype=["number", "markdown"] + ["number"] * len(US_EVAL_FIVE_SHOT.columns),
|
2181 |
+
type="pandas",
|
2182 |
+
)
|
2183 |
+
with gr.Row():
|
2184 |
+
gr.Markdown("""
|
2185 |
+
**US_EVAL Leaderboard** 🔮
|
2186 |
+
|
2187 |
+
- **Metric:** Accuracy
|
2188 |
+
- **Languages:** English
|
2189 |
+
""")
|
2190 |
+
|
2191 |
+
|
2192 |
+
|
2193 |
+
# dataset 5:
|
2194 |
+
with gr.TabItem("CN_EVAL"):
|
2195 |
+
with gr.TabItem("Zero Shot"):
|
2196 |
+
with gr.TabItem("Overall"):
|
2197 |
+
with gr.Row():
|
2198 |
+
gr.components.Dataframe(
|
2199 |
+
CN_EVAL_ZERO_SHOT,
|
2200 |
+
datatype=["number", "markdown"] + ["number"] * len(CN_EVAL_ZERO_SHOT.columns),
|
2201 |
+
type="pandas",
|
2202 |
+
)
|
2203 |
+
with gr.TabItem("Five Shot"):
|
2204 |
+
with gr.TabItem("Overall"):
|
2205 |
+
with gr.Row():
|
2206 |
+
gr.components.Dataframe(
|
2207 |
+
CN_EVAL_FIVE_SHOT,
|
2208 |
+
datatype=["number", "markdown"] + ["number"] * len(CN_EVAL_FIVE_SHOT.columns),
|
2209 |
+
type="pandas",
|
2210 |
+
)
|
2211 |
+
with gr.Row():
|
2212 |
+
gr.Markdown("""
|
2213 |
+
**CN_EVAL Leaderboard** 🔮
|
2214 |
+
|
2215 |
+
- **Metric:** Accuracy
|
2216 |
+
- **Languages:** Chinese
|
2217 |
+
""")
|
2218 |
+
|
2219 |
+
|
2220 |
+
# dataset 6:
|
2221 |
+
with gr.TabItem("PH_EVAL"):
|
2222 |
+
with gr.TabItem("Zero Shot"):
|
2223 |
+
with gr.TabItem("Overall"):
|
2224 |
+
with gr.Row():
|
2225 |
+
gr.components.Dataframe(
|
2226 |
+
PH_EVAL_ZERO_SHOT,
|
2227 |
+
datatype=["number", "markdown"] + ["number"] * len(PH_EVAL_ZERO_SHOT.columns),
|
2228 |
+
type="pandas",
|
2229 |
+
)
|
2230 |
+
with gr.TabItem("Five Shot"):
|
2231 |
+
with gr.TabItem("Overall"):
|
2232 |
+
with gr.Row():
|
2233 |
+
gr.components.Dataframe(
|
2234 |
+
PH_EVAL_FIVE_SHOT,
|
2235 |
+
datatype=["number", "markdown"] + ["number"] * len(PH_EVAL_FIVE_SHOT.columns),
|
2236 |
+
type="pandas",
|
2237 |
+
)
|
2238 |
+
with gr.Row():
|
2239 |
+
gr.Markdown("""
|
2240 |
+
**PH_EVAL Leaderboard** 🔮
|
2241 |
+
|
2242 |
+
- **Metric:** Accuracy
|
2243 |
+
- **Languages:** English
|
2244 |
+
""")
|
2245 |
+
|
2246 |
+
|
2247 |
+
# dataset 7:
|
2248 |
+
with gr.TabItem("Singlish to English Translation"):
|
2249 |
+
with gr.TabItem("Zero Shot"):
|
2250 |
+
with gr.TabItem("Overall"):
|
2251 |
+
with gr.Row():
|
2252 |
+
gr.components.Dataframe(
|
2253 |
+
SING2ENG_ZERO_SHOT,
|
2254 |
+
datatype=["number", "markdown"] + ["number"] * len(SING2ENG_ZERO_SHOT.columns),
|
2255 |
+
type="pandas",
|
2256 |
+
)
|
2257 |
+
with gr.TabItem("Five Shot"):
|
2258 |
+
with gr.TabItem("Overall"):
|
2259 |
+
with gr.Row():
|
2260 |
+
gr.components.Dataframe(
|
2261 |
+
SING2ENG_FIVE_SHOT,
|
2262 |
+
datatype=["number", "markdown"] + ["number"] * len(SING2ENG_FIVE_SHOT.columns),
|
2263 |
+
type="pandas",
|
2264 |
+
)
|
2265 |
+
with gr.Row():
|
2266 |
+
gr.Markdown("""
|
2267 |
+
**SING2ENG Leaderboard** 🔮
|
2268 |
+
|
2269 |
+
- **Metric:** BLEU Avg.
|
2270 |
+
- **Languages:** English
|
2271 |
+
""")
|
2272 |
+
|
2273 |
+
|
2274 |
+
with gr.TabItem("Reasoning"):
|
2275 |
+
|
2276 |
+
|
2277 |
+
# dataset 12:
|
2278 |
+
with gr.TabItem("MMLU"):
|
2279 |
+
with gr.TabItem("Zero Shot"):
|
2280 |
+
with gr.TabItem("Overall"):
|
2281 |
+
with gr.Row():
|
2282 |
+
gr.components.Dataframe(
|
2283 |
+
MMLU_ZERO_SHOT,
|
2284 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_ZERO_SHOT.columns),
|
2285 |
+
type="pandas",
|
2286 |
+
)
|
2287 |
+
with gr.TabItem("Five Shot"):
|
2288 |
+
with gr.TabItem("Overall"):
|
2289 |
+
with gr.Row():
|
2290 |
+
gr.components.Dataframe(
|
2291 |
+
MMLU_FIVE_SHOT,
|
2292 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FIVE_SHOT.columns),
|
2293 |
+
type="pandas",
|
2294 |
+
)
|
2295 |
+
with gr.Row():
|
2296 |
+
gr.Markdown("""
|
2297 |
+
**MMLU Leaderboard** 🔮
|
2298 |
+
|
2299 |
+
- **Metric:** Accuracy.
|
2300 |
+
- **Languages:** English
|
2301 |
+
""")
|
2302 |
+
|
2303 |
+
|
2304 |
+
|
2305 |
+
# dataset 13:
|
2306 |
+
with gr.TabItem("MMLU Full"):
|
2307 |
+
with gr.TabItem("Zero Shot"):
|
2308 |
+
with gr.TabItem("Overall"):
|
2309 |
+
with gr.Row():
|
2310 |
+
gr.components.Dataframe(
|
2311 |
+
MMLU_FULL_ZERO_SHOT,
|
2312 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FULL_ZERO_SHOT.columns),
|
2313 |
+
type="pandas",
|
2314 |
+
)
|
2315 |
+
with gr.TabItem("Five Shot"):
|
2316 |
+
with gr.TabItem("Overall"):
|
2317 |
+
with gr.Row():
|
2318 |
+
gr.components.Dataframe(
|
2319 |
+
MMLU_FULL_FIVE_SHOT,
|
2320 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FULL_FIVE_SHOT.columns),
|
2321 |
+
type="pandas",
|
2322 |
+
)
|
2323 |
+
with gr.Row():
|
2324 |
+
gr.Markdown("""
|
2325 |
+
**MMLU Full Leaderboard** 🔮
|
2326 |
+
|
2327 |
+
- **Metric:** Accuracy.
|
2328 |
+
- **Languages:** English
|
2329 |
+
""")
|
2330 |
+
|
2331 |
+
|
2332 |
+
|
2333 |
+
# dataset 14:
|
2334 |
+
with gr.TabItem("C_EVAL"):
|
2335 |
+
with gr.TabItem("Zero Shot"):
|
2336 |
+
with gr.TabItem("Overall"):
|
2337 |
+
with gr.Row():
|
2338 |
+
gr.components.Dataframe(
|
2339 |
+
C_EVAL_ZERO_SHOT,
|
2340 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_ZERO_SHOT.columns),
|
2341 |
+
type="pandas",
|
2342 |
+
)
|
2343 |
+
with gr.TabItem("Five Shot"):
|
2344 |
+
with gr.TabItem("Overall"):
|
2345 |
+
with gr.Row():
|
2346 |
+
gr.components.Dataframe(
|
2347 |
+
C_EVAL_FIVE_SHOT,
|
2348 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FIVE_SHOT.columns),
|
2349 |
+
type="pandas",
|
2350 |
+
)
|
2351 |
+
with gr.Row():
|
2352 |
+
gr.Markdown("""
|
2353 |
+
**C_EVAL Leaderboard** 🔮
|
2354 |
+
|
2355 |
+
- **Metric:** Accuracy.
|
2356 |
+
- **Languages:** Chinese
|
2357 |
+
""")
|
2358 |
+
|
2359 |
+
|
2360 |
+
|
2361 |
+
# dataset 15:
|
2362 |
+
with gr.TabItem("C_EVAL Full"):
|
2363 |
+
with gr.TabItem("Zero Shot"):
|
2364 |
+
with gr.TabItem("Overall"):
|
2365 |
+
with gr.Row():
|
2366 |
+
gr.components.Dataframe(
|
2367 |
+
C_EVAL_FULL_ZERO_SHOT,
|
2368 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FULL_ZERO_SHOT.columns),
|
2369 |
+
type="pandas",
|
2370 |
+
)
|
2371 |
+
with gr.TabItem("Five Shot"):
|
2372 |
+
with gr.TabItem("Overall"):
|
2373 |
+
with gr.Row():
|
2374 |
+
gr.components.Dataframe(
|
2375 |
+
C_EVAL_FULL_FIVE_SHOT,
|
2376 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FULL_FIVE_SHOT.columns),
|
2377 |
+
type="pandas",
|
2378 |
+
)
|
2379 |
+
with gr.Row():
|
2380 |
+
gr.Markdown("""
|
2381 |
+
**C_EVAL Full Leaderboard** 🔮
|
2382 |
+
|
2383 |
+
- **Metric:** Accuracy.
|
2384 |
+
- **Languages:** Chinese
|
2385 |
+
""")
|
2386 |
+
|
2387 |
+
|
2388 |
+
# dataset 16:
|
2389 |
+
with gr.TabItem("CMMLU"):
|
2390 |
+
with gr.TabItem("Zero Shot"):
|
2391 |
+
with gr.TabItem("Overall"):
|
2392 |
+
with gr.Row():
|
2393 |
+
gr.components.Dataframe(
|
2394 |
+
CMMLU_ZERO_SHOT,
|
2395 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_ZERO_SHOT.columns),
|
2396 |
+
type="pandas",
|
2397 |
+
)
|
2398 |
+
with gr.TabItem("Five Shot"):
|
2399 |
+
with gr.TabItem("Overall"):
|
2400 |
+
with gr.Row():
|
2401 |
+
gr.components.Dataframe(
|
2402 |
+
CMMLU_FIVE_SHOT,
|
2403 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FIVE_SHOT.columns),
|
2404 |
+
type="pandas",
|
2405 |
+
)
|
2406 |
+
with gr.Row():
|
2407 |
+
gr.Markdown("""
|
2408 |
+
**CMMLU Leaderboard** 🔮
|
2409 |
+
|
2410 |
+
- **Metric:** Accuracy.
|
2411 |
+
- **Languages:** Chinese
|
2412 |
+
""")
|
2413 |
+
|
2414 |
+
|
2415 |
+
|
2416 |
+
# dataset 17:
|
2417 |
+
with gr.TabItem("CMMLU Full"):
|
2418 |
+
with gr.TabItem("Zero Shot"):
|
2419 |
+
with gr.TabItem("Overall"):
|
2420 |
+
with gr.Row():
|
2421 |
+
gr.components.Dataframe(
|
2422 |
+
CMMLU_FULL_ZERO_SHOT,
|
2423 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FULL_ZERO_SHOT.columns),
|
2424 |
+
type="pandas",
|
2425 |
+
)
|
2426 |
+
with gr.TabItem("Five Shot"):
|
2427 |
+
with gr.TabItem("Overall"):
|
2428 |
+
with gr.Row():
|
2429 |
+
gr.components.Dataframe(
|
2430 |
+
CMMLU_FULL_FIVE_SHOT,
|
2431 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FULL_FIVE_SHOT.columns),
|
2432 |
+
type="pandas",
|
2433 |
+
)
|
2434 |
+
with gr.Row():
|
2435 |
+
gr.Markdown("""
|
2436 |
+
**CMMLU Full Leaderboard** 🔮
|
2437 |
+
|
2438 |
+
- **Metric:** Accuracy.
|
2439 |
+
- **Languages:** Chinese
|
2440 |
+
""")
|
2441 |
+
|
2442 |
+
|
2443 |
+
# dataset 18:
|
2444 |
+
with gr.TabItem("ZBench"):
|
2445 |
+
with gr.TabItem("Zero Shot"):
|
2446 |
+
with gr.TabItem("Overall"):
|
2447 |
+
with gr.Row():
|
2448 |
+
gr.components.Dataframe(
|
2449 |
+
ZBENCH_ZERO_SHOT,
|
2450 |
+
datatype=["number", "markdown"] + ["number"] * len(ZBENCH_ZERO_SHOT.columns),
|
2451 |
+
type="pandas",
|
2452 |
+
)
|
2453 |
+
with gr.TabItem("Five Shot"):
|
2454 |
+
with gr.TabItem("Overall"):
|
2455 |
+
with gr.Row():
|
2456 |
+
gr.components.Dataframe(
|
2457 |
+
ZBENCH_FIVE_SHOT,
|
2458 |
+
datatype=["number", "markdown"] + ["number"] * len(ZBENCH_FIVE_SHOT.columns),
|
2459 |
+
type="pandas",
|
2460 |
+
)
|
2461 |
+
with gr.Row():
|
2462 |
+
gr.Markdown("""
|
2463 |
+
**ZBench Leaderboard** 🔮
|
2464 |
+
|
2465 |
+
- **Metric:** Accuracy.
|
2466 |
+
- **Languages:** Chinese
|
2467 |
+
""")
|
2468 |
+
|
2469 |
+
|
2470 |
+
|
2471 |
+
with gr.TabItem("FLORES Translation"):
|
2472 |
+
|
2473 |
+
|
2474 |
+
# dataset 8:
|
2475 |
+
with gr.TabItem("FLORES Indonesian to English Translation"):
|
2476 |
+
with gr.TabItem("Zero Shot"):
|
2477 |
+
with gr.TabItem("Overall"):
|
2478 |
+
with gr.Row():
|
2479 |
+
gr.components.Dataframe(
|
2480 |
+
FLORES_IND2ENG_ZERO_SHOT,
|
2481 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_IND2ENG_ZERO_SHOT.columns),
|
2482 |
+
type="pandas",
|
2483 |
+
)
|
2484 |
+
with gr.TabItem("Five Shot"):
|
2485 |
+
with gr.TabItem("Overall"):
|
2486 |
+
with gr.Row():
|
2487 |
+
gr.components.Dataframe(
|
2488 |
+
FLORES_IND2ENG_FIVE_SHOT,
|
2489 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_IND2ENG_FIVE_SHOT.columns),
|
2490 |
+
type="pandas",
|
2491 |
+
)
|
2492 |
+
with gr.Row():
|
2493 |
+
gr.Markdown("""
|
2494 |
+
**flores_ind2eng Leaderboard** 🔮
|
2495 |
+
|
2496 |
+
- **Metric:** BLEU Avg.
|
2497 |
+
- **Languages:** English
|
2498 |
+
""")
|
2499 |
+
|
2500 |
+
|
2501 |
+
# dataset 9:
|
2502 |
+
with gr.TabItem("FLORES Vitenamese to English Translation"):
|
2503 |
+
with gr.TabItem("Zero Shot"):
|
2504 |
+
with gr.TabItem("Overall"):
|
2505 |
+
with gr.Row():
|
2506 |
+
gr.components.Dataframe(
|
2507 |
+
FLORES_VIE2ENG_ZERO_SHOT,
|
2508 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_VIE2ENG_ZERO_SHOT.columns),
|
2509 |
+
type="pandas",
|
2510 |
+
)
|
2511 |
+
with gr.TabItem("Five Shot"):
|
2512 |
+
with gr.TabItem("Overall"):
|
2513 |
+
with gr.Row():
|
2514 |
+
gr.components.Dataframe(
|
2515 |
+
FLORES_VIE2ENG_FIVE_SHOT,
|
2516 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_VIE2ENG_FIVE_SHOT.columns),
|
2517 |
+
type="pandas",
|
2518 |
+
)
|
2519 |
+
with gr.Row():
|
2520 |
+
gr.Markdown("""
|
2521 |
+
**flores_vie2eng Leaderboard** 🔮
|
2522 |
+
|
2523 |
+
- **Metric:** BLEU Avg.
|
2524 |
+
- **Languages:** English
|
2525 |
+
""")
|
2526 |
+
|
2527 |
+
|
2528 |
+
|
2529 |
+
# dataset 10:
|
2530 |
+
with gr.TabItem("FLORES Chinese to English Translation"):
|
2531 |
+
with gr.TabItem("Zero Shot"):
|
2532 |
+
with gr.TabItem("Overall"):
|
2533 |
+
with gr.Row():
|
2534 |
+
gr.components.Dataframe(
|
2535 |
+
FLORES_ZHO2ENG_ZERO_SHOT,
|
2536 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZHO2ENG_ZERO_SHOT.columns),
|
2537 |
+
type="pandas",
|
2538 |
+
)
|
2539 |
+
with gr.TabItem("Five Shot"):
|
2540 |
+
with gr.TabItem("Overall"):
|
2541 |
+
with gr.Row():
|
2542 |
+
gr.components.Dataframe(
|
2543 |
+
FLORES_ZHO2ENG_FIVE_SHOT,
|
2544 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZHO2ENG_FIVE_SHOT.columns),
|
2545 |
+
type="pandas",
|
2546 |
+
)
|
2547 |
+
with gr.Row():
|
2548 |
+
gr.Markdown("""
|
2549 |
+
**flores_zho2eng Leaderboard** 🔮
|
2550 |
+
|
2551 |
+
- **Metric:** BLEU Avg.
|
2552 |
+
- **Languages:** English
|
2553 |
+
""")
|
2554 |
+
|
2555 |
+
|
2556 |
+
# dataset 11:
|
2557 |
+
with gr.TabItem("FLORES Malay to English Translation"):
|
2558 |
+
with gr.TabItem("Zero Shot"):
|
2559 |
+
with gr.TabItem("Overall"):
|
2560 |
+
with gr.Row():
|
2561 |
+
gr.components.Dataframe(
|
2562 |
+
FLORES_ZSM2ENG_ZERO_SHOT,
|
2563 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZSM2ENG_ZERO_SHOT.columns),
|
2564 |
+
type="pandas",
|
2565 |
+
)
|
2566 |
+
with gr.TabItem("Five Shot"):
|
2567 |
+
with gr.TabItem("Overall"):
|
2568 |
+
with gr.Row():
|
2569 |
+
gr.components.Dataframe(
|
2570 |
+
FLORES_ZSM2ENG_FIVE_SHOT,
|
2571 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZSM2ENG_FIVE_SHOT.columns),
|
2572 |
+
type="pandas",
|
2573 |
+
)
|
2574 |
+
with gr.Row():
|
2575 |
+
gr.Markdown("""
|
2576 |
+
**flores_zsm2eng Leaderboard** 🔮
|
2577 |
+
|
2578 |
+
- **Metric:** BLEU Avg.
|
2579 |
+
- **Languages:** English
|
2580 |
+
""")
|
2581 |
+
|
2582 |
+
|
2583 |
+
with gr.TabItem("Emotion Recognition"):
|
2584 |
+
|
2585 |
+
# dataset 18:
|
2586 |
+
with gr.TabItem("ind_emotion"):
|
2587 |
+
with gr.TabItem("Zero Shot"):
|
2588 |
+
with gr.TabItem("Overall"):
|
2589 |
+
with gr.Row():
|
2590 |
+
gr.components.Dataframe(
|
2591 |
+
IND_EMOTION_ZERO_SHOT,
|
2592 |
+
datatype=["number", "markdown"] + ["number"] * len(IND_EMOTION_ZERO_SHOT.columns),
|
2593 |
+
type="pandas",
|
2594 |
+
)
|
2595 |
+
with gr.TabItem("Five Shot"):
|
2596 |
+
with gr.TabItem("Overall"):
|
2597 |
+
with gr.Row():
|
2598 |
+
gr.components.Dataframe(
|
2599 |
+
IND_EMOTION_FIVE_SHOT,
|
2600 |
+
datatype=["number", "markdown"] + ["number"] * len(IND_EMOTION_FIVE_SHOT.columns),
|
2601 |
+
type="pandas",
|
2602 |
+
)
|
2603 |
+
with gr.Row():
|
2604 |
+
gr.Markdown("""
|
2605 |
+
**ind_emotion Leaderboard** 🔮
|
2606 |
+
|
2607 |
+
- **Metric:** Accuracy.
|
2608 |
+
- **Languages:** Indonesian
|
2609 |
+
""")
|
2610 |
+
|
2611 |
+
|
2612 |
+
# dataset
|
2613 |
+
with gr.TabItem("SST2"):
|
2614 |
+
with gr.TabItem("Zero Shot"):
|
2615 |
+
with gr.TabItem("Overall"):
|
2616 |
+
with gr.Row():
|
2617 |
+
gr.components.Dataframe(
|
2618 |
+
SST2_ZERO_SHOT,
|
2619 |
+
datatype=["number", "markdown"] + ["number"] * len(SST2_ZERO_SHOT.columns),
|
2620 |
+
type="pandas",
|
2621 |
+
)
|
2622 |
+
with gr.TabItem("Five Shot"):
|
2623 |
+
with gr.TabItem("Overall"):
|
2624 |
+
with gr.Row():
|
2625 |
+
gr.components.Dataframe(
|
2626 |
+
SST2_FIVE_SHOT,
|
2627 |
+
datatype=["number", "markdown"] + ["number"] * len(SST2_FIVE_SHOT.columns),
|
2628 |
+
type="pandas",
|
2629 |
+
)
|
2630 |
+
with gr.Row():
|
2631 |
+
gr.Markdown("""
|
2632 |
+
**SST2 Leaderboard** 🔮
|
2633 |
+
|
2634 |
+
- **Metric:** Accuracy.
|
2635 |
+
- **Languages:** English
|
2636 |
+
""")
|
2637 |
+
|
2638 |
+
|
2639 |
+
|
2640 |
+
with gr.TabItem("Dialogue"):
|
2641 |
+
|
2642 |
+
|
2643 |
+
# dataset
|
2644 |
+
with gr.TabItem("DREAM"):
|
2645 |
+
with gr.TabItem("Zero Shot"):
|
2646 |
+
with gr.TabItem("Overall"):
|
2647 |
+
with gr.Row():
|
2648 |
+
gr.components.Dataframe(
|
2649 |
+
DREAM_ZERO_SHOT,
|
2650 |
+
datatype=["number", "markdown"] + ["number"] * len(DREAM_ZERO_SHOT.columns),
|
2651 |
+
type="pandas",
|
2652 |
+
)
|
2653 |
+
with gr.TabItem("Five Shot"):
|
2654 |
+
with gr.TabItem("Overall"):
|
2655 |
+
with gr.Row():
|
2656 |
+
gr.components.Dataframe(
|
2657 |
+
DREAM_FIVE_SHOT,
|
2658 |
+
datatype=["number", "markdown"] + ["number"] * len(DREAM_FIVE_SHOT.columns),
|
2659 |
+
type="pandas",
|
2660 |
+
)
|
2661 |
+
with gr.Row():
|
2662 |
+
gr.Markdown("""
|
2663 |
+
**DREAM Leaderboard** 🔮
|
2664 |
+
|
2665 |
+
- **Metric:** Accuracy.
|
2666 |
+
- **Languages:** English
|
2667 |
+
""")
|
2668 |
+
|
2669 |
+
# dataset
|
2670 |
+
with gr.TabItem("SAMSum"):
|
2671 |
+
with gr.TabItem("Zero Shot"):
|
2672 |
+
with gr.TabItem("Overall"):
|
2673 |
+
with gr.Row():
|
2674 |
+
gr.components.Dataframe(
|
2675 |
+
SAMSUM_ZERO_SHOT,
|
2676 |
+
datatype=["number", "markdown"] + ["number"] * len(SAMSUM_ZERO_SHOT.columns),
|
2677 |
+
type="pandas",
|
2678 |
+
)
|
2679 |
+
with gr.TabItem("Five Shot"):
|
2680 |
+
with gr.TabItem("Overall"):
|
2681 |
+
with gr.Row():
|
2682 |
+
gr.components.Dataframe(
|
2683 |
+
SAMSUM_FIVE_SHOT,
|
2684 |
+
datatype=["number", "markdown"] + ["number"] * len(SAMSUM_FIVE_SHOT.columns),
|
2685 |
+
type="pandas",
|
2686 |
+
)
|
2687 |
+
with gr.Row():
|
2688 |
+
gr.Markdown("""
|
2689 |
+
**SAMSum Leaderboard** 🔮
|
2690 |
+
|
2691 |
+
- **Metric:** ROUGE.
|
2692 |
+
- **Languages:** English
|
2693 |
+
""")
|
2694 |
+
|
2695 |
+
|
2696 |
+
# dataset
|
2697 |
+
with gr.TabItem("DialogSum"):
|
2698 |
+
with gr.TabItem("Zero Shot"):
|
2699 |
+
with gr.TabItem("Overall"):
|
2700 |
+
with gr.Row():
|
2701 |
+
gr.components.Dataframe(
|
2702 |
+
DIALOGSUM_ZERO_SHOT,
|
2703 |
+
datatype=["number", "markdown"] + ["number"] * len(DIALOGSUM_ZERO_SHOT.columns),
|
2704 |
+
type="pandas",
|
2705 |
+
)
|
2706 |
+
with gr.TabItem("Five Shot"):
|
2707 |
+
with gr.TabItem("Overall"):
|
2708 |
+
with gr.Row():
|
2709 |
+
gr.components.Dataframe(
|
2710 |
+
DIALOGSUM_FIVE_SHOT,
|
2711 |
+
datatype=["number", "markdown"] + ["number"] * len(DIALOGSUM_FIVE_SHOT.columns),
|
2712 |
+
type="pandas",
|
2713 |
+
)
|
2714 |
+
with gr.Row():
|
2715 |
+
gr.Markdown("""
|
2716 |
+
**DialogSum Leaderboard** 🔮
|
2717 |
+
|
2718 |
+
- **Metric:** ROUGE.
|
2719 |
+
- **Languages:** English
|
2720 |
+
""")
|
2721 |
+
|
2722 |
+
|
2723 |
+
|
2724 |
+
with gr.TabItem("Foundamental NLP"):
|
2725 |
+
|
2726 |
+
|
2727 |
+
# dataset
|
2728 |
+
with gr.TabItem("OCNLI"):
|
2729 |
+
with gr.TabItem("Zero Shot"):
|
2730 |
+
with gr.TabItem("Overall"):
|
2731 |
+
with gr.Row():
|
2732 |
+
gr.components.Dataframe(
|
2733 |
+
OCNLI_ZERO_SHOT,
|
2734 |
+
datatype=["number", "markdown"] + ["number"] * len(OCNLI_ZERO_SHOT.columns),
|
2735 |
+
type="pandas",
|
2736 |
+
)
|
2737 |
+
with gr.TabItem("Five Shot"):
|
2738 |
+
with gr.TabItem("Overall"):
|
2739 |
+
with gr.Row():
|
2740 |
+
gr.components.Dataframe(
|
2741 |
+
OCNLI_FIVE_SHOT,
|
2742 |
+
datatype=["number", "markdown"] + ["number"] * len(OCNLI_FIVE_SHOT.columns),
|
2743 |
+
type="pandas",
|
2744 |
+
)
|
2745 |
+
with gr.Row():
|
2746 |
+
gr.Markdown("""
|
2747 |
+
**OCNLI Leaderboard** 🔮
|
2748 |
+
|
2749 |
+
- **Metric:** Accuracy.
|
2750 |
+
- **Languages:** Chinese
|
2751 |
+
""")
|
2752 |
+
|
2753 |
+
|
2754 |
+
# dataset
|
2755 |
+
with gr.TabItem("C3"):
|
2756 |
+
with gr.TabItem("Zero Shot"):
|
2757 |
+
with gr.TabItem("Overall"):
|
2758 |
+
with gr.Row():
|
2759 |
+
gr.components.Dataframe(
|
2760 |
+
C3_ZERO_SHOT,
|
2761 |
+
datatype=["number", "markdown"] + ["number"] * len(C3_ZERO_SHOT.columns),
|
2762 |
+
type="pandas",
|
2763 |
+
)
|
2764 |
+
with gr.TabItem("Five Shot"):
|
2765 |
+
with gr.TabItem("Overall"):
|
2766 |
+
with gr.Row():
|
2767 |
+
gr.components.Dataframe(
|
2768 |
+
C3_FIVE_SHOT,
|
2769 |
+
datatype=["number", "markdown"] + ["number"] * len(C3_FIVE_SHOT.columns),
|
2770 |
+
type="pandas",
|
2771 |
+
)
|
2772 |
+
with gr.Row():
|
2773 |
+
gr.Markdown("""
|
2774 |
+
**C3 Leaderboard** 🔮
|
2775 |
+
|
2776 |
+
- **Metric:** Accuracy.
|
2777 |
+
- **Languages:** Chinese
|
2778 |
+
""")
|
2779 |
+
|
2780 |
+
|
2781 |
+
|
2782 |
+
|
2783 |
+
# dataset
|
2784 |
+
with gr.TabItem("COLA"):
|
2785 |
+
with gr.TabItem("Zero Shot"):
|
2786 |
+
with gr.TabItem("Overall"):
|
2787 |
+
with gr.Row():
|
2788 |
+
gr.components.Dataframe(
|
2789 |
+
COLA_ZERO_SHOT,
|
2790 |
+
datatype=["number", "markdown"] + ["number"] * len(COLA_ZERO_SHOT.columns),
|
2791 |
+
type="pandas",
|
2792 |
+
)
|
2793 |
+
with gr.TabItem("Five Shot"):
|
2794 |
+
with gr.TabItem("Overall"):
|
2795 |
+
with gr.Row():
|
2796 |
+
gr.components.Dataframe(
|
2797 |
+
COLA_FIVE_SHOT,
|
2798 |
+
datatype=["number", "markdown"] + ["number"] * len(COLA_FIVE_SHOT.columns),
|
2799 |
+
type="pandas",
|
2800 |
+
)
|
2801 |
+
with gr.Row():
|
2802 |
+
gr.Markdown("""
|
2803 |
+
**COLA Leaderboard** 🔮
|
2804 |
+
|
2805 |
+
- **Metric:** Accuracy.
|
2806 |
+
- **Languages:** English
|
2807 |
+
""")
|
2808 |
+
|
2809 |
+
|
2810 |
+
# dataset
|
2811 |
+
with gr.TabItem("QQP"):
|
2812 |
+
with gr.TabItem("Zero Shot"):
|
2813 |
+
with gr.TabItem("Overall"):
|
2814 |
+
with gr.Row():
|
2815 |
+
gr.components.Dataframe(
|
2816 |
+
QQP_ZERO_SHOT,
|
2817 |
+
datatype=["number", "markdown"] + ["number"] * len(QQP_ZERO_SHOT.columns),
|
2818 |
+
type="pandas",
|
2819 |
+
)
|
2820 |
+
with gr.TabItem("Five Shot"):
|
2821 |
+
with gr.TabItem("Overall"):
|
2822 |
+
with gr.Row():
|
2823 |
+
gr.components.Dataframe(
|
2824 |
+
QQP_FIVE_SHOT,
|
2825 |
+
datatype=["number", "markdown"] + ["number"] * len(QQP_FIVE_SHOT.columns),
|
2826 |
+
type="pandas",
|
2827 |
+
)
|
2828 |
+
with gr.Row():
|
2829 |
+
gr.Markdown("""
|
2830 |
+
**QQP Leaderboard** 🔮
|
2831 |
+
|
2832 |
+
- **Metric:** Accuracy.
|
2833 |
+
- **Languages:** English
|
2834 |
+
""")
|
2835 |
+
|
2836 |
+
|
2837 |
+
# dataset
|
2838 |
+
with gr.TabItem("MNLI"):
|
2839 |
+
with gr.TabItem("Zero Shot"):
|
2840 |
+
with gr.TabItem("Overall"):
|
2841 |
+
with gr.Row():
|
2842 |
+
gr.components.Dataframe(
|
2843 |
+
MNLI_ZERO_SHOT,
|
2844 |
+
datatype=["number", "markdown"] + ["number"] * len(MNLI_ZERO_SHOT.columns),
|
2845 |
+
type="pandas",
|
2846 |
+
)
|
2847 |
+
with gr.TabItem("Five Shot"):
|
2848 |
+
with gr.TabItem("Overall"):
|
2849 |
+
with gr.Row():
|
2850 |
+
gr.components.Dataframe(
|
2851 |
+
MNLI_FIVE_SHOT,
|
2852 |
+
datatype=["number", "markdown"] + ["number"] * len(MNLI_FIVE_SHOT.columns),
|
2853 |
+
type="pandas",
|
2854 |
+
)
|
2855 |
+
with gr.Row():
|
2856 |
+
gr.Markdown("""
|
2857 |
+
**MNLI Leaderboard** 🔮
|
2858 |
+
|
2859 |
+
- **Metric:** Accuracy.
|
2860 |
+
- **Languages:** English
|
2861 |
+
""")
|
2862 |
+
|
2863 |
+
|
2864 |
+
# dataset
|
2865 |
+
with gr.TabItem("QNLI"):
|
2866 |
+
with gr.TabItem("Zero Shot"):
|
2867 |
+
with gr.TabItem("Overall"):
|
2868 |
+
with gr.Row():
|
2869 |
+
gr.components.Dataframe(
|
2870 |
+
QNLI_ZERO_SHOT,
|
2871 |
+
datatype=["number", "markdown"] + ["number"] * len(QNLI_ZERO_SHOT.columns),
|
2872 |
+
type="pandas",
|
2873 |
+
)
|
2874 |
+
with gr.TabItem("Five Shot"):
|
2875 |
+
with gr.TabItem("Overall"):
|
2876 |
+
with gr.Row():
|
2877 |
+
gr.components.Dataframe(
|
2878 |
+
QNLI_FIVE_SHOT,
|
2879 |
+
datatype=["number", "markdown"] + ["number"] * len(QNLI_FIVE_SHOT.columns),
|
2880 |
+
type="pandas",
|
2881 |
+
)
|
2882 |
+
with gr.Row():
|
2883 |
+
gr.Markdown("""
|
2884 |
+
**QNLI Leaderboard** 🔮
|
2885 |
+
|
2886 |
+
- **Metric:** Accuracy.
|
2887 |
+
- **Languages:** English
|
2888 |
+
""")
|
2889 |
+
|
2890 |
+
|
2891 |
+
|
2892 |
+
# dataset
|
2893 |
+
with gr.TabItem("WNLI"):
|
2894 |
+
with gr.TabItem("Zero Shot"):
|
2895 |
+
with gr.TabItem("Overall"):
|
2896 |
+
with gr.Row():
|
2897 |
+
gr.components.Dataframe(
|
2898 |
+
WNLI_ZERO_SHOT,
|
2899 |
+
datatype=["number", "markdown"] + ["number"] * len(WNLI_ZERO_SHOT.columns),
|
2900 |
+
type="pandas",
|
2901 |
+
)
|
2902 |
+
with gr.TabItem("Five Shot"):
|
2903 |
+
with gr.TabItem("Overall"):
|
2904 |
+
with gr.Row():
|
2905 |
+
gr.components.Dataframe(
|
2906 |
+
WNLI_FIVE_SHOT,
|
2907 |
+
datatype=["number", "markdown"] + ["number"] * len(WNLI_FIVE_SHOT.columns),
|
2908 |
+
type="pandas",
|
2909 |
+
)
|
2910 |
+
with gr.Row():
|
2911 |
+
gr.Markdown("""
|
2912 |
+
**WNLI Leaderboard** 🔮
|
2913 |
+
|
2914 |
+
- **Metric:** Accuracy.
|
2915 |
+
- **Languages:** English
|
2916 |
+
""")
|
2917 |
+
|
2918 |
+
|
2919 |
+
|
2920 |
+
# dataset
|
2921 |
+
with gr.TabItem("RTE"):
|
2922 |
+
with gr.TabItem("Zero Shot"):
|
2923 |
+
with gr.TabItem("Overall"):
|
2924 |
+
with gr.Row():
|
2925 |
+
gr.components.Dataframe(
|
2926 |
+
RTE_ZERO_SHOT,
|
2927 |
+
datatype=["number", "markdown"] + ["number"] * len(RTE_ZERO_SHOT.columns),
|
2928 |
+
type="pandas",
|
2929 |
+
)
|
2930 |
+
with gr.TabItem("Five Shot"):
|
2931 |
+
with gr.TabItem("Overall"):
|
2932 |
+
with gr.Row():
|
2933 |
+
gr.components.Dataframe(
|
2934 |
+
RTE_FIVE_SHOT,
|
2935 |
+
datatype=["number", "markdown"] + ["number"] * len(RTE_FIVE_SHOT.columns),
|
2936 |
+
type="pandas",
|
2937 |
+
)
|
2938 |
+
with gr.Row():
|
2939 |
+
gr.Markdown("""
|
2940 |
+
**RTE Leaderboard** 🔮
|
2941 |
+
|
2942 |
+
- **Metric:** Accuracy.
|
2943 |
+
- **Languages:** English
|
2944 |
+
""")
|
2945 |
+
|
2946 |
+
|
2947 |
+
|
2948 |
+
# dataset
|
2949 |
+
with gr.TabItem("MRPC"):
|
2950 |
+
with gr.TabItem("Zero Shot"):
|
2951 |
+
with gr.TabItem("Overall"):
|
2952 |
+
with gr.Row():
|
2953 |
+
gr.components.Dataframe(
|
2954 |
+
MRPC_ZERO_SHOT,
|
2955 |
+
datatype=["number", "markdown"] + ["number"] * len(MRPC_ZERO_SHOT.columns),
|
2956 |
+
type="pandas",
|
2957 |
+
)
|
2958 |
+
with gr.TabItem("Five Shot"):
|
2959 |
+
with gr.TabItem("Overall"):
|
2960 |
+
with gr.Row():
|
2961 |
+
gr.components.Dataframe(
|
2962 |
+
MRPC_FIVE_SHOT,
|
2963 |
+
datatype=["number", "markdown"] + ["number"] * len(MRPC_FIVE_SHOT.columns),
|
2964 |
+
type="pandas",
|
2965 |
+
)
|
2966 |
+
with gr.Row():
|
2967 |
+
gr.Markdown("""
|
2968 |
+
**MRPC Leaderboard** 🔮
|
2969 |
+
|
2970 |
+
- **Metric:** Accuracy.
|
2971 |
+
- **Languages:** English
|
2972 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2973 |
|
2974 |
|
2975 |
gr.Markdown(r"""
|
2976 |
+
If our datasets and leaderboard are useful, please consider cite:
|
|
|
|
|
2977 |
```bibtex
|
2978 |
@article{SeaEval2023,
|
2979 |
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
2980 |
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
2981 |
journal={arXiv preprint arXiv:2309.04766},
|
2982 |
+
year={2023}}
|
|
|
2983 |
```
|
2984 |
""")
|
2985 |
# Running the functions on page load in addition to when the button is clicked
|
|
|
2988 |
block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
|
2989 |
"""
|
2990 |
|
2991 |
+
|
2992 |
+
|
2993 |
+
|
2994 |
+
|
2995 |
block.queue(max_size=10)
|
2996 |
+
block.launch(server_name="0.0.0.0", share=False)
|
2997 |
|
2998 |
|
2999 |
# Possible changes:
|