Spaces:
Running
Running
datasets
Browse files
app.py
CHANGED
@@ -816,6 +816,392 @@ def get_data_flores_zsm2eng(eval_mode='zero_shot', fillna=True, rank=True):
|
|
816 |
FLORES_ZSM2ENG_ZERO_SHOT = get_data_flores_zho2eng(eval_mode="zero_shot")
|
817 |
FLORES_ZSM2ENG_FIVE_SHOT = get_data_flores_zho2eng(eval_mode="five_shot")
|
818 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
819 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
820 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
821 |
|
@@ -1179,7 +1565,7 @@ with block:
|
|
1179 |
|
1180 |
|
1181 |
|
1182 |
-
# dataset
|
1183 |
with gr.TabItem("FLORES Malay to English Translation"):
|
1184 |
with gr.Row():
|
1185 |
gr.Markdown("""
|
@@ -1206,6 +1592,237 @@ with block:
|
|
1206 |
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZSM2ENG_FIVE_SHOT.columns),
|
1207 |
type="pandas",
|
1208 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1209 |
|
1210 |
gr.Markdown(r"""
|
1211 |
|
|
|
816 |
FLORES_ZSM2ENG_ZERO_SHOT = get_data_flores_zho2eng(eval_mode="zero_shot")
|
817 |
FLORES_ZSM2ENG_FIVE_SHOT = get_data_flores_zho2eng(eval_mode="five_shot")
|
818 |
|
819 |
+
|
820 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
821 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
822 |
+
|
823 |
+
|
824 |
+
def get_data_mmlu(eval_mode='zero_shot', fillna=True, rank=True):
|
825 |
+
|
826 |
+
df_list = []
|
827 |
+
|
828 |
+
for model in MODEL_LIST:
|
829 |
+
|
830 |
+
|
831 |
+
results_list = [ALL_RESULTS[model][eval_mode]['mmlu'][res] for res in ALL_RESULTS[model][eval_mode]['mmlu']]
|
832 |
+
|
833 |
+
|
834 |
+
try:
|
835 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
836 |
+
|
837 |
+
except:
|
838 |
+
print(results_list)
|
839 |
+
accuracy = -1
|
840 |
+
|
841 |
+
|
842 |
+
res = {
|
843 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
844 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
845 |
+
"Accuracy": accuracy,
|
846 |
+
}
|
847 |
+
|
848 |
+
df_list.append(res)
|
849 |
+
|
850 |
+
|
851 |
+
df = pd.DataFrame(df_list)
|
852 |
+
# If there are any models that are the same, merge them
|
853 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
854 |
+
df = df.groupby("Model", as_index=False).first()
|
855 |
+
# Put 'Model' column first
|
856 |
+
#cols = sorted(list(df.columns))
|
857 |
+
cols = list(df.columns)
|
858 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
859 |
+
df = df[cols]
|
860 |
+
|
861 |
+
if rank:
|
862 |
+
df = add_rank(df, compute_average=True)
|
863 |
+
|
864 |
+
if fillna:
|
865 |
+
df.fillna("", inplace=True)
|
866 |
+
|
867 |
+
return df
|
868 |
+
|
869 |
+
|
870 |
+
MMLU_ZERO_SHOT = get_data_mmlu(eval_mode="zero_shot")
|
871 |
+
MMLU_FIVE_SHOT = get_data_mmlu(eval_mode="five_shot")
|
872 |
+
|
873 |
+
|
874 |
+
|
875 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
876 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
877 |
+
|
878 |
+
|
879 |
+
def get_data_mmlu_full(eval_mode='zero_shot', fillna=True, rank=True):
|
880 |
+
|
881 |
+
df_list = []
|
882 |
+
|
883 |
+
for model in MODEL_LIST:
|
884 |
+
|
885 |
+
|
886 |
+
results_list = [ALL_RESULTS[model][eval_mode]['mmlu_full'][res] for res in ALL_RESULTS[model][eval_mode]['mmlu_full']]
|
887 |
+
|
888 |
+
|
889 |
+
try:
|
890 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
891 |
+
|
892 |
+
except:
|
893 |
+
print(results_list)
|
894 |
+
accuracy = -1
|
895 |
+
|
896 |
+
|
897 |
+
res = {
|
898 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
899 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
900 |
+
"Accuracy": accuracy,
|
901 |
+
}
|
902 |
+
|
903 |
+
df_list.append(res)
|
904 |
+
|
905 |
+
|
906 |
+
df = pd.DataFrame(df_list)
|
907 |
+
# If there are any models that are the same, merge them
|
908 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
909 |
+
df = df.groupby("Model", as_index=False).first()
|
910 |
+
# Put 'Model' column first
|
911 |
+
#cols = sorted(list(df.columns))
|
912 |
+
cols = list(df.columns)
|
913 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
914 |
+
df = df[cols]
|
915 |
+
|
916 |
+
if rank:
|
917 |
+
df = add_rank(df, compute_average=True)
|
918 |
+
|
919 |
+
if fillna:
|
920 |
+
df.fillna("", inplace=True)
|
921 |
+
|
922 |
+
return df
|
923 |
+
|
924 |
+
|
925 |
+
MMLU_FULL_ZERO_SHOT = get_data_mmlu_full(eval_mode="zero_shot")
|
926 |
+
MMLU_FULL_FIVE_SHOT = get_data_mmlu_full(eval_mode="five_shot")
|
927 |
+
|
928 |
+
|
929 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
930 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
931 |
+
|
932 |
+
|
933 |
+
def get_data_c_eval(eval_mode='zero_shot', fillna=True, rank=True):
|
934 |
+
|
935 |
+
df_list = []
|
936 |
+
|
937 |
+
for model in MODEL_LIST:
|
938 |
+
|
939 |
+
|
940 |
+
results_list = [ALL_RESULTS[model][eval_mode]['c_eval'][res] for res in ALL_RESULTS[model][eval_mode]['c_eval']]
|
941 |
+
|
942 |
+
|
943 |
+
try:
|
944 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
945 |
+
|
946 |
+
except:
|
947 |
+
print(results_list)
|
948 |
+
accuracy = -1
|
949 |
+
|
950 |
+
|
951 |
+
res = {
|
952 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
953 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
954 |
+
"Accuracy": accuracy,
|
955 |
+
}
|
956 |
+
|
957 |
+
df_list.append(res)
|
958 |
+
|
959 |
+
|
960 |
+
df = pd.DataFrame(df_list)
|
961 |
+
# If there are any models that are the same, merge them
|
962 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
963 |
+
df = df.groupby("Model", as_index=False).first()
|
964 |
+
# Put 'Model' column first
|
965 |
+
#cols = sorted(list(df.columns))
|
966 |
+
cols = list(df.columns)
|
967 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
968 |
+
df = df[cols]
|
969 |
+
|
970 |
+
if rank:
|
971 |
+
df = add_rank(df, compute_average=True)
|
972 |
+
|
973 |
+
if fillna:
|
974 |
+
df.fillna("", inplace=True)
|
975 |
+
|
976 |
+
return df
|
977 |
+
|
978 |
+
|
979 |
+
C_EVAL_ZERO_SHOT = get_data_c_eval(eval_mode="zero_shot")
|
980 |
+
C_EVAL_FIVE_SHOT = get_data_c_eval(eval_mode="five_shot")
|
981 |
+
|
982 |
+
|
983 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
984 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
985 |
+
|
986 |
+
|
987 |
+
def get_data_c_eval_full(eval_mode='zero_shot', fillna=True, rank=True):
|
988 |
+
|
989 |
+
df_list = []
|
990 |
+
|
991 |
+
for model in MODEL_LIST:
|
992 |
+
|
993 |
+
|
994 |
+
results_list = [ALL_RESULTS[model][eval_mode]['c_eval_full'][res] for res in ALL_RESULTS[model][eval_mode]['c_eval_full']]
|
995 |
+
|
996 |
+
|
997 |
+
try:
|
998 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
999 |
+
|
1000 |
+
except:
|
1001 |
+
print(results_list)
|
1002 |
+
accuracy = -1
|
1003 |
+
|
1004 |
+
|
1005 |
+
res = {
|
1006 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1007 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1008 |
+
"Accuracy": accuracy,
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
df_list.append(res)
|
1012 |
+
|
1013 |
+
|
1014 |
+
df = pd.DataFrame(df_list)
|
1015 |
+
# If there are any models that are the same, merge them
|
1016 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1017 |
+
df = df.groupby("Model", as_index=False).first()
|
1018 |
+
# Put 'Model' column first
|
1019 |
+
#cols = sorted(list(df.columns))
|
1020 |
+
cols = list(df.columns)
|
1021 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1022 |
+
df = df[cols]
|
1023 |
+
|
1024 |
+
if rank:
|
1025 |
+
df = add_rank(df, compute_average=True)
|
1026 |
+
|
1027 |
+
if fillna:
|
1028 |
+
df.fillna("", inplace=True)
|
1029 |
+
|
1030 |
+
return df
|
1031 |
+
|
1032 |
+
|
1033 |
+
C_EVAL_FULL_ZERO_SHOT = get_data_c_eval_full(eval_mode="zero_shot")
|
1034 |
+
C_EVAL_FULL_FIVE_SHOT = get_data_c_eval_full(eval_mode="five_shot")
|
1035 |
+
|
1036 |
+
|
1037 |
+
|
1038 |
+
|
1039 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1040 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1041 |
+
|
1042 |
+
|
1043 |
+
def get_data_cmmlu(eval_mode='zero_shot', fillna=True, rank=True):
|
1044 |
+
|
1045 |
+
df_list = []
|
1046 |
+
|
1047 |
+
for model in MODEL_LIST:
|
1048 |
+
|
1049 |
+
|
1050 |
+
results_list = [ALL_RESULTS[model][eval_mode]['cmmlu'][res] for res in ALL_RESULTS[model][eval_mode]['cmmlu']]
|
1051 |
+
|
1052 |
+
|
1053 |
+
try:
|
1054 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1055 |
+
|
1056 |
+
except:
|
1057 |
+
print(results_list)
|
1058 |
+
accuracy = -1
|
1059 |
+
|
1060 |
+
|
1061 |
+
res = {
|
1062 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1063 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1064 |
+
"Accuracy": accuracy,
|
1065 |
+
}
|
1066 |
+
|
1067 |
+
df_list.append(res)
|
1068 |
+
|
1069 |
+
|
1070 |
+
df = pd.DataFrame(df_list)
|
1071 |
+
# If there are any models that are the same, merge them
|
1072 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1073 |
+
df = df.groupby("Model", as_index=False).first()
|
1074 |
+
# Put 'Model' column first
|
1075 |
+
#cols = sorted(list(df.columns))
|
1076 |
+
cols = list(df.columns)
|
1077 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1078 |
+
df = df[cols]
|
1079 |
+
|
1080 |
+
if rank:
|
1081 |
+
df = add_rank(df, compute_average=True)
|
1082 |
+
|
1083 |
+
if fillna:
|
1084 |
+
df.fillna("", inplace=True)
|
1085 |
+
|
1086 |
+
return df
|
1087 |
+
|
1088 |
+
|
1089 |
+
CMMLU_ZERO_SHOT = get_data_cmmlu(eval_mode="zero_shot")
|
1090 |
+
CMMLU_FIVE_SHOT = get_data_cmmlu(eval_mode="five_shot")
|
1091 |
+
|
1092 |
+
|
1093 |
+
|
1094 |
+
|
1095 |
+
|
1096 |
+
|
1097 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1098 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1099 |
+
|
1100 |
+
|
1101 |
+
def get_data_cmmlu_full(eval_mode='zero_shot', fillna=True, rank=True):
|
1102 |
+
|
1103 |
+
df_list = []
|
1104 |
+
|
1105 |
+
for model in MODEL_LIST:
|
1106 |
+
|
1107 |
+
|
1108 |
+
results_list = [ALL_RESULTS[model][eval_mode]['cmmlu_full'][res] for res in ALL_RESULTS[model][eval_mode]['cmmlu_full']]
|
1109 |
+
|
1110 |
+
|
1111 |
+
try:
|
1112 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1113 |
+
|
1114 |
+
except:
|
1115 |
+
print(results_list)
|
1116 |
+
accuracy = -1
|
1117 |
+
|
1118 |
+
|
1119 |
+
res = {
|
1120 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1121 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1122 |
+
"Accuracy": accuracy,
|
1123 |
+
}
|
1124 |
+
|
1125 |
+
df_list.append(res)
|
1126 |
+
|
1127 |
+
|
1128 |
+
df = pd.DataFrame(df_list)
|
1129 |
+
# If there are any models that are the same, merge them
|
1130 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1131 |
+
df = df.groupby("Model", as_index=False).first()
|
1132 |
+
# Put 'Model' column first
|
1133 |
+
#cols = sorted(list(df.columns))
|
1134 |
+
cols = list(df.columns)
|
1135 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1136 |
+
df = df[cols]
|
1137 |
+
|
1138 |
+
if rank:
|
1139 |
+
df = add_rank(df, compute_average=True)
|
1140 |
+
|
1141 |
+
if fillna:
|
1142 |
+
df.fillna("", inplace=True)
|
1143 |
+
|
1144 |
+
return df
|
1145 |
+
|
1146 |
+
|
1147 |
+
CMMLU_FULL_ZERO_SHOT = get_data_cmmlu_full(eval_mode="zero_shot")
|
1148 |
+
CMMLU_FULL_FIVE_SHOT = get_data_cmmlu_full(eval_mode="five_shot")
|
1149 |
+
|
1150 |
+
|
1151 |
+
|
1152 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1153 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1154 |
+
|
1155 |
+
|
1156 |
+
def get_data_zbench(eval_mode='zero_shot', fillna=True, rank=True):
|
1157 |
+
|
1158 |
+
df_list = []
|
1159 |
+
|
1160 |
+
for model in MODEL_LIST:
|
1161 |
+
|
1162 |
+
|
1163 |
+
results_list = [ALL_RESULTS[model][eval_mode]['zbench'][res] for res in ALL_RESULTS[model][eval_mode]['zbench']]
|
1164 |
+
|
1165 |
+
|
1166 |
+
try:
|
1167 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1168 |
+
|
1169 |
+
except:
|
1170 |
+
print(results_list)
|
1171 |
+
accuracy = -1
|
1172 |
+
|
1173 |
+
|
1174 |
+
res = {
|
1175 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1176 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1177 |
+
"Accuracy": accuracy,
|
1178 |
+
}
|
1179 |
+
|
1180 |
+
df_list.append(res)
|
1181 |
+
|
1182 |
+
|
1183 |
+
df = pd.DataFrame(df_list)
|
1184 |
+
# If there are any models that are the same, merge them
|
1185 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1186 |
+
df = df.groupby("Model", as_index=False).first()
|
1187 |
+
# Put 'Model' column first
|
1188 |
+
#cols = sorted(list(df.columns))
|
1189 |
+
cols = list(df.columns)
|
1190 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1191 |
+
df = df[cols]
|
1192 |
+
|
1193 |
+
if rank:
|
1194 |
+
df = add_rank(df, compute_average=True)
|
1195 |
+
|
1196 |
+
if fillna:
|
1197 |
+
df.fillna("", inplace=True)
|
1198 |
+
|
1199 |
+
return df
|
1200 |
+
|
1201 |
+
|
1202 |
+
ZBENCH_ZERO_SHOT = get_data_zbench(eval_mode="zero_shot")
|
1203 |
+
ZBENCH_FIVE_SHOT = get_data_zbench(eval_mode="five_shot")
|
1204 |
+
|
1205 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1206 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1207 |
|
|
|
1565 |
|
1566 |
|
1567 |
|
1568 |
+
# dataset 11:
|
1569 |
with gr.TabItem("FLORES Malay to English Translation"):
|
1570 |
with gr.Row():
|
1571 |
gr.Markdown("""
|
|
|
1592 |
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZSM2ENG_FIVE_SHOT.columns),
|
1593 |
type="pandas",
|
1594 |
)
|
1595 |
+
|
1596 |
+
|
1597 |
+
# dataset 12:
|
1598 |
+
with gr.TabItem("MMLU"):
|
1599 |
+
with gr.Row():
|
1600 |
+
gr.Markdown("""
|
1601 |
+
**MMLU Leaderboard** 🔮
|
1602 |
+
|
1603 |
+
- **Metric:** Accuracy.
|
1604 |
+
- **Languages:** English
|
1605 |
+
""")
|
1606 |
+
|
1607 |
+
with gr.TabItem("zero_shot"):
|
1608 |
+
with gr.TabItem("Overall"):
|
1609 |
+
with gr.Row():
|
1610 |
+
gr.components.Dataframe(
|
1611 |
+
MMLU_ZERO_SHOT,
|
1612 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_ZERO_SHOT.columns),
|
1613 |
+
type="pandas",
|
1614 |
+
)
|
1615 |
+
|
1616 |
+
with gr.TabItem("five_shot"):
|
1617 |
+
with gr.TabItem("Overall"):
|
1618 |
+
with gr.Row():
|
1619 |
+
gr.components.Dataframe(
|
1620 |
+
MMLU_FIVE_SHOT,
|
1621 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FIVE_SHOT.columns),
|
1622 |
+
type="pandas",
|
1623 |
+
)
|
1624 |
+
|
1625 |
+
|
1626 |
+
# dataset 13:
|
1627 |
+
with gr.TabItem("MMLU Full"):
|
1628 |
+
with gr.Row():
|
1629 |
+
gr.Markdown("""
|
1630 |
+
**MMLU Full Leaderboard** 🔮
|
1631 |
+
|
1632 |
+
- **Metric:** Accuracy.
|
1633 |
+
- **Languages:** English
|
1634 |
+
""")
|
1635 |
+
|
1636 |
+
with gr.TabItem("zero_shot"):
|
1637 |
+
with gr.TabItem("Overall"):
|
1638 |
+
with gr.Row():
|
1639 |
+
gr.components.Dataframe(
|
1640 |
+
MMLU_FULL_ZERO_SHOT,
|
1641 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FULL_ZERO_SHOT.columns),
|
1642 |
+
type="pandas",
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
|
1646 |
+
|
1647 |
+
with gr.TabItem("five_shot"):
|
1648 |
+
with gr.TabItem("Overall"):
|
1649 |
+
with gr.Row():
|
1650 |
+
gr.components.Dataframe(
|
1651 |
+
MMLU_FULL_FIVE_SHOT,
|
1652 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FULL_FIVE_SHOT.columns),
|
1653 |
+
type="pandas",
|
1654 |
+
)
|
1655 |
+
|
1656 |
+
# dataset 14:
|
1657 |
+
with gr.TabItem("C_EVAL"):
|
1658 |
+
with gr.Row():
|
1659 |
+
gr.Markdown("""
|
1660 |
+
**C_EVAL Leaderboard** 🔮
|
1661 |
+
|
1662 |
+
- **Metric:** Accuracy.
|
1663 |
+
- **Languages:** Chinese
|
1664 |
+
""")
|
1665 |
+
|
1666 |
+
with gr.TabItem("zero_shot"):
|
1667 |
+
with gr.TabItem("Overall"):
|
1668 |
+
with gr.Row():
|
1669 |
+
gr.components.Dataframe(
|
1670 |
+
C_EVAL_ZERO_SHOT,
|
1671 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_ZERO_SHOT.columns),
|
1672 |
+
type="pandas",
|
1673 |
+
)
|
1674 |
+
|
1675 |
+
|
1676 |
+
|
1677 |
+
with gr.TabItem("five_shot"):
|
1678 |
+
with gr.TabItem("Overall"):
|
1679 |
+
with gr.Row():
|
1680 |
+
gr.components.Dataframe(
|
1681 |
+
C_EVAL_FIVE_SHOT,
|
1682 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FIVE_SHOT.columns),
|
1683 |
+
type="pandas",
|
1684 |
+
)
|
1685 |
+
|
1686 |
+
|
1687 |
+
# dataset 15:
|
1688 |
+
with gr.TabItem("C_EVAL Full"):
|
1689 |
+
with gr.Row():
|
1690 |
+
gr.Markdown("""
|
1691 |
+
**C_EVAL Full Leaderboard** 🔮
|
1692 |
+
|
1693 |
+
- **Metric:** Accuracy.
|
1694 |
+
- **Languages:** Chinese
|
1695 |
+
""")
|
1696 |
+
|
1697 |
+
with gr.TabItem("zero_shot"):
|
1698 |
+
with gr.TabItem("Overall"):
|
1699 |
+
with gr.Row():
|
1700 |
+
gr.components.Dataframe(
|
1701 |
+
C_EVAL_FULL_ZERO_SHOT,
|
1702 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FULL_ZERO_SHOT.columns),
|
1703 |
+
type="pandas",
|
1704 |
+
)
|
1705 |
+
|
1706 |
+
|
1707 |
+
|
1708 |
+
with gr.TabItem("five_shot"):
|
1709 |
+
with gr.TabItem("Overall"):
|
1710 |
+
with gr.Row():
|
1711 |
+
gr.components.Dataframe(
|
1712 |
+
C_EVAL_FULL_FIVE_SHOT,
|
1713 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FULL_FIVE_SHOT.columns),
|
1714 |
+
type="pandas",
|
1715 |
+
)
|
1716 |
+
|
1717 |
+
# dataset 16:
|
1718 |
+
with gr.TabItem("CMMLU"):
|
1719 |
+
with gr.Row():
|
1720 |
+
gr.Markdown("""
|
1721 |
+
**CMMLU Leaderboard** 🔮
|
1722 |
+
|
1723 |
+
- **Metric:** Accuracy.
|
1724 |
+
- **Languages:** Chinese
|
1725 |
+
""")
|
1726 |
+
|
1727 |
+
with gr.TabItem("zero_shot"):
|
1728 |
+
with gr.TabItem("Overall"):
|
1729 |
+
with gr.Row():
|
1730 |
+
gr.components.Dataframe(
|
1731 |
+
CMMLU_ZERO_SHOT,
|
1732 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_ZERO_SHOT.columns),
|
1733 |
+
type="pandas",
|
1734 |
+
)
|
1735 |
+
|
1736 |
+
|
1737 |
+
|
1738 |
+
with gr.TabItem("five_shot"):
|
1739 |
+
with gr.TabItem("Overall"):
|
1740 |
+
with gr.Row():
|
1741 |
+
gr.components.Dataframe(
|
1742 |
+
CMMLU_FIVE_SHOT,
|
1743 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FIVE_SHOT.columns),
|
1744 |
+
type="pandas",
|
1745 |
+
)
|
1746 |
+
|
1747 |
+
# dataset 17:
|
1748 |
+
with gr.TabItem("CMMLU Full"):
|
1749 |
+
with gr.Row():
|
1750 |
+
gr.Markdown("""
|
1751 |
+
**CMMLU Full Leaderboard** 🔮
|
1752 |
+
|
1753 |
+
- **Metric:** Accuracy.
|
1754 |
+
- **Languages:** Chinese
|
1755 |
+
""")
|
1756 |
+
|
1757 |
+
with gr.TabItem("zero_shot"):
|
1758 |
+
with gr.TabItem("Overall"):
|
1759 |
+
with gr.Row():
|
1760 |
+
gr.components.Dataframe(
|
1761 |
+
CMMLU_FULL_ZERO_SHOT,
|
1762 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FULL_ZERO_SHOT.columns),
|
1763 |
+
type="pandas",
|
1764 |
+
)
|
1765 |
+
|
1766 |
+
|
1767 |
+
|
1768 |
+
with gr.TabItem("five_shot"):
|
1769 |
+
with gr.TabItem("Overall"):
|
1770 |
+
with gr.Row():
|
1771 |
+
gr.components.Dataframe(
|
1772 |
+
CMMLU_FULL_FIVE_SHOT,
|
1773 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FULL_FIVE_SHOT.columns),
|
1774 |
+
type="pandas",
|
1775 |
+
)
|
1776 |
+
|
1777 |
+
# dataset 18:
|
1778 |
+
with gr.TabItem("ZBench"):
|
1779 |
+
with gr.Row():
|
1780 |
+
gr.Markdown("""
|
1781 |
+
**ZBench Leaderboard** 🔮
|
1782 |
+
|
1783 |
+
- **Metric:** Accuracy.
|
1784 |
+
- **Languages:** Chinese
|
1785 |
+
""")
|
1786 |
+
|
1787 |
+
with gr.TabItem("zero_shot"):
|
1788 |
+
with gr.TabItem("Overall"):
|
1789 |
+
with gr.Row():
|
1790 |
+
gr.components.Dataframe(
|
1791 |
+
ZBENCH_ZERO_SHOT,
|
1792 |
+
datatype=["number", "markdown"] + ["number"] * len(ZBENCH_ZERO_SHOT.columns),
|
1793 |
+
type="pandas",
|
1794 |
+
)
|
1795 |
+
|
1796 |
+
|
1797 |
+
|
1798 |
+
with gr.TabItem("five_shot"):
|
1799 |
+
with gr.TabItem("Overall"):
|
1800 |
+
with gr.Row():
|
1801 |
+
gr.components.Dataframe(
|
1802 |
+
ZBENCH_FIVE_SHOT,
|
1803 |
+
datatype=["number", "markdown"] + ["number"] * len(ZBENCH_FIVE_SHOT.columns),
|
1804 |
+
type="pandas",
|
1805 |
+
)
|
1806 |
+
|
1807 |
+
|
1808 |
+
|
1809 |
+
|
1810 |
+
|
1811 |
+
|
1812 |
+
|
1813 |
+
|
1814 |
+
|
1815 |
+
|
1816 |
+
|
1817 |
+
|
1818 |
+
|
1819 |
+
|
1820 |
+
|
1821 |
+
|
1822 |
+
|
1823 |
+
|
1824 |
+
|
1825 |
+
|
1826 |
|
1827 |
gr.Markdown(r"""
|
1828 |
|