import streamlit as st from app.draw_diagram import * def dashboard(): with st.container(): st.title("SeaEval") st.markdown(""" [gh]: https://github.com/SeaEval/SeaEval [![GitHub watchers](https://img.shields.io/github/watchers/SeaEval/SeaEval?style=social)][gh] [![GitHub Repo stars](https://img.shields.io/github/stars/SeaEval/SeaEval?style=social)][gh] """) st.markdown("#### News") st.markdown("Nov, 2024: Update layout and support comparison between models with similar model sizes.") st.divider() seaeval_url = "https://seaeval.github.io/" st.markdown("#### What is [SeaEval](%s)?" % seaeval_url) with st.container(): left_co, cent_co,last_co = st.columns(3) with cent_co: st.image("./style/seaeval_overall.png", # caption="SeaEval data range", width=500) st.markdown(''' ''') st.markdown("##### A benchmark for multilingual, multicultral foundation model evaluation consisting of >30 dataset and we are keep expanding over time.") st.markdown(''':star: How models understand and reason with natural language? :balloon: Languages: English, Chinese, Malay, Spainish, Indonedian, Vietnamese, Filipino. ''') st.markdown(''':star: How models comprehend cultural practices, nuances and values? :balloon: 4 new datasets on Cultural Understanding. ''') st.markdown(''':star: How models perform across languages in terms of consistency? :balloon: 2 new datasets with curated metrics for Cross-Linugal Consistency. ''') with st.container(): left_co, cent_co,last_co = st.columns(3) with cent_co: st.image("./style/consistency.png", # caption="SeaEval data range", width=500) st.markdown("##### Evaluation with enhanced cross-lingual capabilities.") st.markdown(''':star: How models perform according to different (paraphrased) instructions? :balloon: Each dataset is equipped with 5 different prompts to avoid randomness introduced by instructions, which is non-negligible.. ''') st.markdown(''':star: Multilingual accuracy and performance consistency across languages. :balloon: If you can answer the question in your native language, can you answer the same question correctly in your second/third language? ''') st.divider() with st.container(): st.markdown("##### Citations") st.markdown(''' :round_pushpin: SeaEval Paper \n @article{SeaEval, title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning}, author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.}, journal={NAACL}, year={2024} } ''') def cross_lingual_consistency(): st.title("Task: Cross-Lingual Consistency") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = ['Cross-MMLU', 'Cross-XQUAD', 'Cross-LogiQA'] category_one_dict = { 'Zero Shot': 'zero_shot', 'Few Shot' : 'few_shot' } category_two_dict = { 'Cross-MMLU' : 'cross_mmlu', 'Cross-XQUAD' : 'cross_xquad', 'Cross-LogiQA': 'cross_logiqa' } left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) with middle: model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B']) with right: sort = st.selectbox('Sort (For Chart)', ['Accuracy','Cross-Lingual Consistency', 'AC3', 'English', 'Chinese', 'Spanish', 'Vietnamese']) sortby = 'Ascending' if category_one or category_two or sort or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('cross_lingual', category_one, category_two, sort, sortby, model_size_range) def cultural_reasoning(): st.title("Task: Cultural Reasoning") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = [ 'SG EVAL V2 MCQ', 'SG EVAL V2 Open Ended', 'SG EVAL', 'SG EVAL V1 Cleaned', 'CN EVAL', 'PH EVAL', 'US EVAL' ] category_one_dict = {'Zero Shot': 'zero_shot', 'Few Shot': 'few_shot' } category_two_dict = {'SG EVAL': 'sg_eval', 'SG EVAL V1 Cleaned' : 'sg_eval_v1_cleaned', 'SG EVAL V2 MCQ' : 'sg_eval_v2_mcq', 'SG EVAL V2 Open Ended': 'sg_eval_v2_open', 'US EVAL' : 'us_eval', 'CN EVAL' : 'cn_eval', 'PH EVAL' : 'ph_eval' } left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) with middle: model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B']) sortby = 'Ascending' if category_one or category_two or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('cultural_reasoning', category_one, category_two, 'Accuracy', sortby, model_size_range) def general_reasoning(): st.title("Task: General Reasoning") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = [ 'MMLU', 'CMMLU', 'IndoMMLU', 'C Eval', 'ZBench', ] category_one_dict = {'Zero Shot': 'zero_shot', 'Few Shot': 'few_shot'} category_two_dict = {'MMLU': 'mmlu', 'C Eval': 'c_eval', 'CMMLU': 'cmmlu', 'ZBench': 'zbench', 'IndoMMLU': 'indommlu'} left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) # with right: # sortby = st.selectbox('sorted by', ['Ascending', 'Descending']) sortby = 'Ascending' if category_one or category_two or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('general_reasoning', category_one, category_two, 'Accuracy',sortby) # else: # draw_only_acc('general_reasoning', 'zero_shot', 'MMLU Full', 'Descending') def flores(): st.title("Task: FLORES-Translation") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = ['Indonesian to English', 'Vitenamese to English', 'Chinese to English', 'Malay to English' ] category_one_dict = {'Zero Shot': 'zero_shot', 'Few Shot': 'few_shot'} category_two_dict = {'Indonesian to English': 'ind2eng', 'Vitenamese to English': 'vie2eng', 'Chinese to English': 'zho2eng', 'Malay to English': 'zsm2eng'} left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) # with right: # sortby = st.selectbox('sorted by', ['Ascending', 'Descending']) sortby = 'Ascending' if category_one or category_two or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('flores_translation', category_one, category_two, 'BLEU',sortby) # else: # draw_flores_translation('zero_shot', 'Indonesian to English', 'Descending') def emotion(): st.title("Task: Emotion") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = [ 'Indonesian Emotion Classification', 'SST2', ] category_one_dict = {'Zero Shot': 'zero_shot', 'Few Shot': 'few_shot'} category_two_dict = {'Indonesian Emotion Classification': 'ind_emotion', 'SST2': 'sst2'} left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) # with right: # sortby = st.selectbox('sorted by', ['Ascending', 'Descending']) sortby = 'Ascending' if category_one or category_two or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('emotion', category_one, category_two, 'Accuracy', sortby) # else: # draw_only_acc('emotion', 'zero_shot', 'Indonesian Emotion Classification', 'Descending') def dialogue(): st.title("Task: Dialogue") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = [ 'DREAM', 'SAMSum', 'DialogSum', ] category_one_dict = {'Zero Shot': 'zero_shot', 'Few Shot': 'few_shot'} category_two_dict = {'DREAM': 'dream', 'SAMSum': 'samsum', 'DialogSum': 'dialogsum'} left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) with middle: if category_two == 'DREAM': sort = st.selectbox('Sort', ['Accuracy']) else: sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L']) #with right: # sortby = st.selectbox('by', ['Ascending', 'Descending']) sortby = 'Ascending' if category_one or category_two or sort or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('dialogue', category_one, category_two, sort, sortby) # else: # draw_dialogue('zero_shot', 'DREAM', sort[0],'Descending') def fundamental_nlp_tasks(): st.title("Task: Fundamental NLP Tasks") filters_levelone = ['Zero Shot', 'Few Shot'] filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC'] category_one_dict = {'Zero Shot': 'zero_shot', 'Few Shot': 'few_shot'} category_two_dict = {'OCNLI': 'ocnli', 'C3': 'c3', 'COLA': 'cola', 'QQP': 'qqp', 'MNLI': 'mnli', 'QNLI': 'qnli', 'WNLI': 'wnli', 'RTE': 'rte', 'MRPC': 'mrpc'} left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2]) with left: category_one = st.selectbox('Zero or Few Shot', filters_levelone) with center: category_two = st.selectbox('Dataset', filters_leveltwo) # with right: # sortby = st.selectbox('sorted by', ['Ascending', 'Descending']) sortby = 'Ascending' if category_one or category_two or sortby: category_one = category_one_dict[category_one] category_two = category_two_dict[category_two] draw('fundamental_nlp_tasks', category_one, category_two, 'Accuracy', sortby) # else: # draw_only_acc('fundamental_nlp_tasks', 'zero_shot', 'OCNLI', 'Descending')