stochasticribosome commited on
Commit
d89cdc6
·
1 Parent(s): 4562c4b
Files changed (1) hide show
  1. main.py +3 -4
main.py CHANGED
@@ -144,7 +144,7 @@ def get_pdbid_from_filename(filename: str):
144
  # Assuming the filename would be of the standard form 11GS.pdb
145
  return filename.split(".")[0]
146
 
147
- def predict(pdb_code, pdb_file):
148
  #path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file)
149
 
150
  #pdb = open(path_to_pdb, "r").read()
@@ -184,7 +184,6 @@ def predict(pdb_code, pdb_file):
184
  for i in range(adaptability.shape[0]):
185
  data.append([i, atom_mapping[atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1], atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]])
186
 
187
- topN = 100
188
  topN_ind = np.argsort(adaptability)[::-1][:topN]
189
 
190
  pdb = open(pdb_file.name, "r").read()
@@ -198,7 +197,7 @@ def predict(pdb_code, pdb_file):
198
  # view.setSpecular(0.5) # Adjust the specular lighting effect
199
  # view.setAmbient(0.5) # Adjust the ambient lighting effect
200
 
201
- for i in range(10):
202
  adaptability_value = adaptability[topN_ind[i]]
203
  color = 'orange'
204
  view.addSphere({
@@ -248,7 +247,7 @@ def run():
248
  with gr.Row():
249
  dataframe = gr.Dataframe()
250
 
251
- single_btn.click(fn=predict, inputs=[inp, pdb_file], outputs=[html, dataframe])
252
 
253
 
254
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
144
  # Assuming the filename would be of the standard form 11GS.pdb
145
  return filename.split(".")[0]
146
 
147
+ def predict(pdb_code, pdb_file, topN):
148
  #path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file)
149
 
150
  #pdb = open(path_to_pdb, "r").read()
 
184
  for i in range(adaptability.shape[0]):
185
  data.append([i, atom_mapping[atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1], atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]])
186
 
 
187
  topN_ind = np.argsort(adaptability)[::-1][:topN]
188
 
189
  pdb = open(pdb_file.name, "r").read()
 
197
  # view.setSpecular(0.5) # Adjust the specular lighting effect
198
  # view.setAmbient(0.5) # Adjust the ambient lighting effect
199
 
200
+ for i in range(topN):
201
  adaptability_value = adaptability[topN_ind[i]]
202
  color = 'orange'
203
  view.addSphere({
 
247
  with gr.Row():
248
  dataframe = gr.Dataframe()
249
 
250
+ single_btn.click(fn=predict, inputs=[inp, pdb_file, topN], outputs=[html, dataframe])
251
 
252
 
253
  demo.launch(server_name="0.0.0.0", server_port=7860)