|
import spaces |
|
import gradio as gr |
|
import py3Dmol |
|
import io |
|
import numpy as np |
|
import os |
|
import traceback |
|
from esm.sdk import client |
|
from esm.sdk.api import ESM3InferenceClient, ESMProtein, GenerationConfig, ESMProteinError |
|
from esm.utils.structure.protein_chain import ProteinChain |
|
from Bio.Data import PDBData |
|
import biotite.structure as bs |
|
from biotite.structure.io import pdb |
|
from esm.utils import residue_constants as RC |
|
import requests |
|
from dotenv import load_dotenv |
|
import torch |
|
import json |
|
import time |
|
from Bio.PDB import PDBParser |
|
import itertools |
|
|
|
howtouse = """ |
|
## How to use |
|
1. Upload a PDB file using the file uploader. |
|
2. Adjust the number of prediction runs per frame using the slider. |
|
3. Set the noise level to add random perturbations to the structure. |
|
4. Choose the number of MD frames to simulate. |
|
5. Click the "Run Prediction" button to start the process. |
|
6. The 3D visualization will show the original structure (grey) and the best predicted structure (green). |
|
7. The alignment result will display the best cRMSD (lower is better). |
|
8. Total and Normalized (per atom) steric clashes (lower is better) |
|
""" |
|
about = """ ## Background |
|
|
|
- 3D protein structures typically come from crystal structures, which are densely packed and lack flexibility. |
|
- Different proteins require varying levels of noise to achieve overlap in conformational space. |
|
- We've developed an adaptability model that predicts the appropriate noise level for each protein. |
|
|
|
## Our Approach |
|
|
|
1. **Adaptability Model**: Trained on Molecular Dynamics (MD) data, our model predicts flexibility at the atomic level. |
|
2. **Correlation**: The adaptability predictions correlate well with the RMSD (Root Mean Square Deviation) from ESM3 sampling. |
|
3. **Noise Application**: We apply noise to simulate protein flexibility, mimicking MD-like behavior. |
|
""" |
|
about1 = """ |
|
## About |
|
This demo uses the ESM3 model to predict protein structures from PDB files. |
|
It runs multiple predictions with added noise and simulated MD frames, displaying the best result based on the lowest cRMSD. |
|
""" |
|
|
|
load_dotenv() |
|
|
|
API_URL = "https://forge.evolutionaryscale.ai/api/v1" |
|
MODEL = "esm3-open-2024-03" |
|
API_TOKEN = os.environ.get("ESM_API_TOKEN") |
|
if not API_TOKEN: |
|
raise ValueError("ESM_API_TOKEN environment variable is not set") |
|
|
|
model = client( |
|
model=MODEL, |
|
url=API_URL, |
|
token="2x0lifRJCpo8klurAJtRom" |
|
) |
|
|
|
amino3to1 = { |
|
'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F', |
|
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L', |
|
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R', |
|
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y' |
|
} |
|
|
|
|
|
|
|
COVALENT_RADIUS = { |
|
"H": 0.31, "HE": 0.28, "LI": 1.28, "BE": 0.96, "B": 0.84, "C": 0.76, "N": 0.71, "O": 0.66, "F": 0.57, "NE": 0.58, |
|
"NA": 1.66, "MG": 1.41, "AL": 1.21, "SI": 1.11, "P": 1.07, "S": 1.05, "CL": 1.02, "AR": 1.06, "K": 2.03, |
|
"CA": 1.76, "SC": 1.7, "TI": 1.6, "V": 1.53, "CR": 1.39, "MN": 1.5, "FE": 1.42, "CO": 1.38, "NI": 1.24, |
|
"CU": 1.32, "ZN": 1.22, "GA": 1.22, "GE": 1.2, "AS": 1.19, "SE": 1.2, "BR": 1.2, "KR": 1.16, "RB": 2.2, |
|
"SR": 1.95, "Y": 1.9, "ZR": 1.75, "NB": 1.64, "MO": 1.54, "TC": 1.47, "RU": 1.46, "RH": 1.42, "PD": 1.39, |
|
"AG": 1.45, "CD": 1.44, "IN": 1.42, "SN": 1.39, "SB": 1.39, "TE": 1.38, "I": 1.39, "XE": 1.4, "CS": 2.44, |
|
"BA": 2.15, "LA": 2.07, "CE": 2.04, "PR": 2.03, "ND": 2.01, "PM": 1.99, "SM": 1.98, "EU": 1.98, "GD": 1.96, |
|
"TB": 1.94, "DY": 1.92, "HO": 1.92, "ER": 1.89, "TM": 1.9, "YB": 1.87, "LU": 1.87, "HF": 1.75, "TA": 1.7, |
|
"W": 1.62, "RE": 1.51, "OS": 1.44, "IR": 1.41, "PT": 1.36, "AU": 1.36, "HG": 1.32, "TL": 1.45, "PB": 1.46, |
|
"BI": 1.48, "PO": 1.4, "AT": 1.5, "RN": 1.5, "FR": 2.6, "RA": 2.21, "AC": 2.15, "TH": 2.06, "PA": 2.0, |
|
"U": 1.96, "NP": 1.9, "PU": 1.87, "AM": 1.8, "CM": 1.69, "BK": 2.0, "CF": 2.0, "ES": 2.0, "FM": 2.0, |
|
"MD": 2.0, "NO": 2.0, "LR": 2.0, "RF": 2.0, "DB": 2.0, "SG": 2.0, "BH": 2.0, "HS": 2.0, "MT": 2.0, |
|
"DS": 2.0, "RG": 2.0, "CN": 2.0, "UUT": 2.0, "UUQ": 2.0, "UUP": 2.0, "UUH": 2.0, "UUS": 2.0, "UUO": 2.0 |
|
} |
|
|
|
|
|
def get_covalent_radius(atom): |
|
element = atom.element.upper() |
|
return COVALENT_RADIUS.get(element, 2.0) |
|
|
|
def calculate_clashes_for_pdb(pdb_file): |
|
parser = PDBParser(QUIET=True) |
|
structure = parser.get_structure("protein", pdb_file) |
|
atoms = list(structure.get_atoms()) |
|
steric_clash_count = 0 |
|
|
|
num_atoms = len(atoms) |
|
|
|
|
|
for atom1, atom2 in itertools.combinations(atoms, 2): |
|
covalent_radius_sum = get_covalent_radius(atom1) + get_covalent_radius(atom2) |
|
distance = atom1 - atom2 |
|
|
|
|
|
if distance + 0.5 < covalent_radius_sum: |
|
steric_clash_count += 1 |
|
|
|
|
|
norm_ster_clash_count = steric_clash_count / num_atoms |
|
return f"{steric_clash_count}", f"{norm_ster_clash_count}" |
|
|
|
def read_pdb_io(pdb_file): |
|
if isinstance(pdb_file, io.StringIO): |
|
pdb_content = pdb_file.getvalue() |
|
elif hasattr(pdb_file, 'name'): |
|
with open(pdb_file.name, 'r') as f: |
|
pdb_content = f.read() |
|
else: |
|
raise ValueError("Unsupported file type") |
|
|
|
if not pdb_content.strip(): |
|
raise ValueError("The PDB file is empty.") |
|
|
|
pdb_io = io.StringIO(pdb_content) |
|
return pdb_io, pdb_content |
|
|
|
def get_protein(pdb_file) -> ESMProtein: |
|
try: |
|
pdb_io, content = read_pdb_io(pdb_file) |
|
|
|
if not content.strip(): |
|
raise ValueError("The PDB file is empty") |
|
|
|
|
|
pdb_file = pdb.PDBFile.read(pdb_io) |
|
structure = pdb_file.get_structure() |
|
|
|
|
|
if structure.array_length() == 0: |
|
raise ValueError("The PDB file does not contain any valid atoms") |
|
|
|
|
|
valid_residues = [] |
|
for res in bs.residue_iter(structure): |
|
res_name = res.res_name |
|
if isinstance(res_name, np.ndarray): |
|
res_name = res_name[0] |
|
if res_name in amino3to1: |
|
valid_residues.append(res) |
|
|
|
if not valid_residues: |
|
raise ValueError("No valid amino acid residues found in the PDB file") |
|
|
|
sequence = ''.join(amino3to1.get(res.res_name[0] if isinstance(res.res_name, np.ndarray) else res.res_name, 'X') for res in valid_residues) |
|
|
|
|
|
residue_indices = [] |
|
for res in valid_residues: |
|
if isinstance(res.res_id, (list, tuple, np.ndarray)): |
|
residue_indices.append(res.res_id[0]) |
|
else: |
|
residue_indices.append(res.res_id) |
|
|
|
|
|
protein_chain = ProteinChain( |
|
id="test", |
|
sequence=sequence, |
|
chain_id="A", |
|
entity_id=None, |
|
residue_index=np.array(residue_indices, dtype=int), |
|
insertion_code=np.full(len(sequence), "", dtype="<U4"), |
|
atom37_positions=np.full((len(sequence), 37, 3), np.nan), |
|
atom37_mask=np.zeros((len(sequence), 37), dtype=bool), |
|
confidence=np.ones(len(sequence), dtype=np.float32) |
|
) |
|
|
|
|
|
for i, res in enumerate(valid_residues): |
|
for atom in res: |
|
atom_name = atom.atom_name |
|
if isinstance(atom_name, np.ndarray): |
|
atom_name = atom_name[0] |
|
if atom_name in RC.atom_order: |
|
idx = RC.atom_order[atom_name] |
|
coord = atom.coord |
|
if coord.ndim > 1: |
|
coord = coord[0] |
|
protein_chain.atom37_positions[i, idx] = coord |
|
protein_chain.atom37_mask[i, idx] = True |
|
|
|
protein = ESMProtein.from_protein_chain(protein_chain) |
|
return protein |
|
except Exception as e: |
|
print(f"Error processing PDB file: {str(e)}") |
|
raise ValueError(f"Unable to process the PDB file: {str(e)}") |
|
|
|
def add_noise_to_coordinates(protein: ESMProtein, noise_level: float) -> ESMProtein: |
|
"""Add Gaussian noise to the atom positions of the protein.""" |
|
coordinates = protein.coordinates |
|
noise = np.random.randn(*coordinates.shape) * noise_level |
|
noisy_coordinates = coordinates + noise |
|
return ESMProtein(sequence=protein.sequence, coordinates=noisy_coordinates) |
|
|
|
def run_structure_prediction(protein: ESMProtein, temperature: float, num_steps: int) -> ESMProtein: |
|
structure_prediction_config = GenerationConfig( |
|
track="structure", |
|
num_steps=num_steps, |
|
temperature=temperature, |
|
) |
|
try: |
|
response = model.generate(protein, structure_prediction_config) |
|
|
|
if isinstance(response, ESMProtein): |
|
return response |
|
elif isinstance(response, ESMProteinError): |
|
print(f"ESMProteinError during structure prediction: {response.error_msg}") |
|
return None |
|
else: |
|
raise ValueError(f"Unexpected response type: {type(response)}") |
|
except Exception as e: |
|
print(f"Error during structure prediction: {str(e)}") |
|
return None |
|
|
|
def align_after_prediction(protein: ESMProtein, structure_prediction: ESMProtein) -> tuple[ESMProtein, float]: |
|
if structure_prediction is None: |
|
return None, float('inf') |
|
|
|
try: |
|
structure_prediction_chain = structure_prediction.to_protein_chain() |
|
protein_chain = protein.to_protein_chain() |
|
|
|
|
|
min_length = min(len(structure_prediction_chain.sequence), len(protein_chain.sequence)) |
|
structure_indices = np.arange(0, min_length) |
|
|
|
|
|
aligned_chain = structure_prediction_chain.align( |
|
protein_chain, |
|
mobile_inds=structure_indices, |
|
target_inds=structure_indices |
|
) |
|
|
|
|
|
crmsd = structure_prediction_chain.rmsd( |
|
protein_chain, |
|
mobile_inds=structure_indices, |
|
target_inds=structure_indices |
|
) |
|
|
|
return ESMProtein.from_protein_chain(aligned_chain), crmsd |
|
except AttributeError as e: |
|
print(f"Error during alignment: {str(e)}") |
|
print(f"Structure prediction type: {type(structure_prediction)}") |
|
print(f"Structure prediction attributes: {dir(structure_prediction)}") |
|
return None, float('inf') |
|
except Exception as e: |
|
print(f"Unexpected error during alignment: {str(e)}") |
|
return None, float('inf') |
|
|
|
def visualize_after_pred(protein: ESMProtein, aligned: ESMProtein): |
|
if aligned is None: |
|
return None |
|
|
|
view = py3Dmol.view(width=800, height=600) |
|
view.addModel(protein_to_pdb(protein), "pdb") |
|
view.setStyle({"cartoon": {"color": "lightgrey"}}) |
|
view.addModel(protein_to_pdb(aligned), "pdb") |
|
view.setStyle({"model": -1}, {"cartoon": {"color": "lightgreen"}}) |
|
view.zoomTo() |
|
|
|
return view |
|
|
|
def protein_to_pdb(protein: ESMProtein): |
|
pdb_str = "" |
|
for i, (aa, coords) in enumerate(zip(protein.sequence, protein.coordinates)): |
|
for j, atom in enumerate(RC.atom_types): |
|
if not torch.isnan(coords[j][0]): |
|
x, y, z = coords[j].tolist() |
|
pdb_str += f"ATOM {i*37+j+1:5d} {atom:3s} {aa:3s} A{i+1:4d} {x:8.3f}{y:8.3f}{z:8.3f}\n" |
|
return pdb_str |
|
|
|
def prediction_visualization(pdb_file, num_runs: int, noise_level: float, num_frames: int, temperature: float, num_steps: int, progress=gr.Progress()): |
|
protein = get_protein(pdb_file) |
|
runs = [] |
|
|
|
total_iterations = num_frames * num_runs |
|
progress(0, desc="Starting predictions") |
|
|
|
for frame in progress.tqdm(range(num_frames), desc="Processing frames"): |
|
noisy_protein = add_noise_to_coordinates(protein, noise_level) |
|
|
|
for i in range(num_runs): |
|
progress((frame * num_runs + i + 1) / total_iterations, desc=f"Frame {frame+1}, Run {i+1}") |
|
structure_prediction = run_structure_prediction(noisy_protein, temperature, num_steps) |
|
if structure_prediction is not None: |
|
aligned, crmsd = align_after_prediction(protein, structure_prediction) |
|
if aligned is not None: |
|
runs.append((crmsd, aligned)) |
|
time.sleep(0.1) |
|
|
|
if not runs: |
|
return None, "No successful predictions" |
|
|
|
best_aligned = sorted(runs, key=lambda x: x[0])[0] |
|
view_data = visualize_after_pred(protein, best_aligned[1]) |
|
return view_data, f"Best cRMSD: {best_aligned[0]:.4f}" |
|
|
|
@spaces.GPU |
|
def run_prediction(pdb_file, num_runs, noise_level, num_frames, temperature, num_steps, progress=gr.Progress()): |
|
try: |
|
if pdb_file is None: |
|
return "Please upload a PDB file.", "No file uploaded", "", "" |
|
|
|
progress(0, desc="Starting prediction") |
|
view, crmsd_text = prediction_visualization(pdb_file, num_runs, noise_level, num_frames, temperature, num_steps, progress) |
|
steric_clash_text, norm_steric_clash_text = calculate_clashes_for_pdb(pdb_file) |
|
if view is None: |
|
return "No successful predictions were made. Try adjusting the parameters or check the PDB file.", crmsd_text, steric_clash_text, norm_steric_clash_text |
|
|
|
progress(0.9, desc="Rendering visualization") |
|
|
|
|
|
view_html = view._make_html().replace("'", '"') |
|
html_content = f""" |
|
<iframe style="width: 100%; height: 600px;" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='<!DOCTYPE html><html>{view_html}</html>'></iframe> |
|
""" |
|
|
|
progress(1.0, desc="Completed") |
|
return html_content, crmsd_text, steric_clash_text, norm_steric_clash_text |
|
except Exception as e: |
|
error_message = str(e) |
|
stack_trace = traceback.format_exc() |
|
return f""" |
|
<div style='color: red;'> |
|
<h3>Error:</h3> |
|
<p>{error_message}</p> |
|
<h4>Stack Trace:</h4> |
|
<pre>{stack_trace}</pre> |
|
</div> |
|
""", "Error occurred", "", "" |
|
|
|
def create_demo(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Protein Structure Prediction and Visualization with Noise and MD Frames") |
|
with gr.Accordion(label='learn more about MISATO ESM3 conformational sampling', open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(about) |
|
with gr.Column(): |
|
gr.Markdown(howtouse) |
|
with gr.Row(): |
|
gr.Markdown(about1) |
|
with gr.Accordion(label="watch presentation video", open=False): |
|
with gr.Row(): |
|
gr.Video(value="demovideo/demo.mp4", label="MISATO Video Submission") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
pdb_file = gr.File(label="Upload PDB file") |
|
num_runs = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Number of runs per frame") |
|
noise_level = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.1, label="Noise level") |
|
num_frames = gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of MD frames") |
|
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.7, label="Temperature") |
|
num_steps = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Number of steps") |
|
run_button = gr.Button("Run Prediction") |
|
|
|
with gr.Column(scale=2): |
|
visualization = gr.HTML(label="3D Visualization") |
|
alignment_result = gr.Textbox(label="Alignment Result") |
|
steric_clash_result = gr.Textbox(label="Steric Clash Result") |
|
norm_steric_clash_result = gr.Textbox(label="Normalized Steric Clash Result") |
|
|
|
run_button.click( |
|
fn=run_prediction, |
|
inputs=[pdb_file, num_runs, noise_level, num_frames, temperature, num_steps], |
|
outputs=[visualization, alignment_result, steric_clash_result, norm_steric_clash_result] |
|
) |
|
gr.Examples( |
|
examples=[ |
|
["examples/1ywi.pdb"], |
|
["examples/5awl.pdb"], |
|
["examples/11gs.pdb"], |
|
], |
|
inputs=[pdb_file], |
|
outputs=[visualization, alignment_result, steric_clash_result, norm_steric_clash_result], |
|
fn=run_prediction, |
|
cache_examples=False, |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_demo() |
|
demo.queue() |
|
demo.launch() |