# Import libraries | |
import streamlit as st | |
import mne | |
import matplotlib.pyplot as plt | |
import os | |
import streamlit as st | |
import random | |
from misc import * | |
import streamlit as st | |
# Create two columns with st.columns (new way) | |
col1, col2 = st.columns(2) | |
# Create the upload button in the first column | |
# Load the edf file | |
edf_file = col1.file_uploader("Upload an EEG edf file", type="edf") | |
# Create the result placeholder button in the second column | |
col2.button('Result:') | |
if edf_file is not None: | |
# Read the file | |
raw = read_file(edf_file) | |
# Preprocess and plot the data | |
preprocessing_and_plotting(raw) | |
# Build the model | |
clf = build_model(model_name='deep4net', n_classes=2, n_chans=21, input_window_samples=6000) | |
output = predict(raw,clf) | |
# # Print the output | |
set_button_state (output,col2) |