MJobe commited on
Commit
bda7361
·
1 Parent(s): 1c5522d

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +17 -7
main.py CHANGED
@@ -1,19 +1,29 @@
1
  import fitz
2
  from fastapi import FastAPI, File, UploadFile, Form
3
  from fastapi.responses import JSONResponse
 
4
  from PIL import Image
5
  from io import BytesIO
6
  from starlette.middleware import Middleware
7
  from starlette.middleware.cors import CORSMiddleware
8
- from transformers import pipeline, DistilBertTokenizer, DistilBertForQuestionAnswering
9
 
10
  app = FastAPI()
11
 
 
 
 
 
 
 
 
 
 
 
12
  nlp_qa = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
13
 
14
  description = """
15
  ## Image-based Document QA
16
- This API performs document question answering using a DistilBERT-based model.
17
 
18
  ### Endpoints:
19
  - **POST /uploadfile/:** Upload an image file to extract text and answer provided questions.
@@ -34,16 +44,16 @@ async def perform_document_qa(
34
  # Open the image using PIL
35
  image = Image.open(BytesIO(contents))
36
 
37
- # Perform document question answering for each question using DistilBERT-based model
38
  answers_dict = {}
39
  for question in questions.split(','):
40
  result = nlp_qa(
41
- question.strip(),
42
- image
43
  )
44
 
45
- # Access the 'answer' key from the result
46
- answer = result['answer']
47
 
48
  # Format the question as a string without extra characters
49
  formatted_question = question.strip("[]")
 
1
  import fitz
2
  from fastapi import FastAPI, File, UploadFile, Form
3
  from fastapi.responses import JSONResponse
4
+ from transformers import pipeline
5
  from PIL import Image
6
  from io import BytesIO
7
  from starlette.middleware import Middleware
8
  from starlette.middleware.cors import CORSMiddleware
 
9
 
10
  app = FastAPI()
11
 
12
+ # Set up CORS middleware
13
+ origins = ["*"] # or specify your list of allowed origins
14
+ app.add_middleware(
15
+ CORSMiddleware,
16
+ allow_origins=origins,
17
+ allow_credentials=True,
18
+ allow_methods=["*"],
19
+ allow_headers=["*"],
20
+ )
21
+
22
  nlp_qa = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
23
 
24
  description = """
25
  ## Image-based Document QA
26
+ This API performs document question answering using a LayoutLMv2-based model.
27
 
28
  ### Endpoints:
29
  - **POST /uploadfile/:** Upload an image file to extract text and answer provided questions.
 
44
  # Open the image using PIL
45
  image = Image.open(BytesIO(contents))
46
 
47
+ # Perform document question answering for each question using LayoutLMv2-based model
48
  answers_dict = {}
49
  for question in questions.split(','):
50
  result = nlp_qa(
51
+ image,
52
+ question.strip()
53
  )
54
 
55
+ # Access the 'answer' key from the first item in the result list
56
+ answer = result[0]['answer']
57
 
58
  # Format the question as a string without extra characters
59
  formatted_question = question.strip("[]")