import fitz from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import JSONResponse from transformers import pipeline from PIL import Image from io import BytesIO from starlette.middleware import Middleware from starlette.middleware.cors import CORSMiddleware from pdf2image import convert_from_bytes app = FastAPI() # Set up CORS middleware origins = ["*"] # or specify your list of allowed origins app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut") nlp_qa_v2 = pipeline("document-question-answering", model="faisalraza/layoutlm-invoices") nlp_qa_v3 = pipeline("question-answering", model="deepset/roberta-base-squad2") description = """ ## Image-based Document QA This API performs document question answering using a LayoutLMv2-based model. ### Endpoints: - **POST /uploadfile/:** Upload an image file to extract text and answer provided questions. - **POST /pdfQA/:** Provide a PDF file to extract text and answer provided questions. """ app = FastAPI(docs_url="/", description=description) @app.post("/uploadfile/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( file: UploadFile = File(...), questions: str = Form(...), ): try: # Read the uploaded file as bytes contents = await file.read() # Open the image using PIL image = Image.open(BytesIO(contents)) # Perform document question answering for each question using LayoutLMv2-based model answers_dict = {} for question in questions.split(','): result = nlp_qa( image, question.strip() ) # Access the 'answer' key from the first item in the result list answer = result[0]['answer'] # Format the question as a string without extra characters formatted_question = question.strip("[]") answers_dict[formatted_question] = answer return answers_dict except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/uploadfilev2/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( file: UploadFile = File(...), questions: str = Form(...), ): try: # Read the uploaded file as bytes contents = await file.read() # Open the image using PIL image = Image.open(BytesIO(contents)) # Perform document question answering for each question using LayoutLMv2-based model answers_dict = {} for question in questions.split(','): result = nlp_qa_v2( image, question.strip() ) # Access the 'answer' key from the first item in the result list answer = result[0]['answer'] # Format the question as a string without extra characters formatted_question = question.strip("[]") answers_dict[formatted_question] = answer return answers_dict except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/uploadfilev3/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( context: str = Form(...), question: str = Form(...), ): try: QA_input = { 'question': question, 'context': context } res = nlp_qa_v3(QA_input) return res['answer'] except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) # Set up CORS middleware origins = ["*"] # or specify your list of allowed origins app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], )